CIESC Journal ›› 2018, Vol. 69 ›› Issue (S1): 87-94.doi: 10.11949/j.issn.0438-1157.20180259

Previous Articles     Next Articles

A dynamic multi-attribute decision making approach to industrial process control performance evaluations

LUO Lin, YANG Bo, LI Hongguang   

  1. College of Information Science & Technology, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2018-03-08 Revised:2018-05-10 Online:2018-09-30 Published:2018-09-30


Practically, the aging of industrial equipments could lead to varying performances of control systems, while traditional control performance evaluation methods show limitations in this scenario. In response, a control system performance adaptive evaluation approach based on variable weight dynamic multi-attribute decision-making is proposed. Firstly, to judge the control performance, a calculation method that combines the system failure rate and operating time is suggested to divide the operating state of control systems to ensure that the decision information comes from different operation stages. Subsequently, a multi-attribute decision-making matrix is constructed with four evaluation indicators including the overshoot, nonlinear index, output variance, and valve stick index to evaluate aging slow time-varying systems. An analytic hierarchy process method is used to calculate the change of the attribute weight in the decision process to determine the current performance state. The proposed method was applied to an industrial DMF recovery plant, demonstrating the effectiveness of the method.

Key words: dynamic multi-attribute decision making, control performance assessment, aging system, data integration

CLC Number: 

  • TP277
[1] VERONESI M,VISIOLI A. Performance assessment and retuning of PID controllers for integral processes[J]. Journal of Process Control, 2010, 20(3):261-269.
[2] BIALKOWSKI W L. Dreams versus reality:a view from both sides of the gap[J]. Pulp & Paper Canada, 1993, 94(11):19-27.
[3] JELALI M. Control system performance monitoring[J]. Methoden und Anwendungen der Steuerungs-, Regelungs-und Informationstechnik, 2010, 58(5):286-288.
[4] HARRIS T J. Assessment of control loop performance[J]. Canadian Journal of Chemical Engineering, 1989, 67(5):856-861.
[5] DESBOROUGH L,HARRIS T. Performance assessment measures for univariate feed forward feedback control[J].Canadian Journal of Chemical Engineering,1993,71(4):1186-1197.
[6] KO B S,EDGER T E. Performance assessment of cascade control loops[J].AIChE Journal,2000,46(2):281-291.
[7] HUANG B,SHAH S L,FUJⅡ H. The unitary interactor matrix and its estimation using closed-loop data[J].Journal of Process Control,1997,7(3):95-207.
[8] THORNHILL N F, OETTINGER M, FEDENCZUK P. Refinery-wide control loop performance assessment[J]. Journal of Process Control, 1999, 9(1999):109-124.
[9] 张荣金, 张泉灵. 基于历史性能基准的模型预测控制性能监控[J]. 计算机与应用化学, 2011, 28(3):275-278. ZHANG R J,ZHANG Q L. Model predictive control performance monitoring based on historical performance benchmarks[J]. Computers and Applied Chemistry,2011, 28(3):275-278.
[10] SHANG L, TIAN X, CAI L. A multi-index control performance assessment method based on historical prediction error covariance[J]. International Federation of Automatic Control,2017, 50(1):13892-13897.
[11] KHAMSEH S A, SEDIGH A K, MOSHIRI B, et al. Control performance assessment based on sensor fusion techniques[J]. Control Engineering Practice, 2016, 49:14-28.
[12] GAO X, YANG F, SHANG C, et al. A review of control loop monitoring and diagnosis:prospects of controller maintenance in big data era[J]. Chinese Journal of Chemical Engineering, 2016, 24(8):952-962.
[13] JELALI M. Diagnosis of stiction-related actuator problems[M]//Advances in Industrial Control. London:Springer,2013:265-300.
[14] CHOUDHURY M A A S, THORNHILL N F, SHAH S L. Modelling valve stiction[J]. Control Engineering Practice, 2005, 13(5):641-658.
[15] YAMASSHITA Y. Qualitative Analysis for Detection of Stiction in Control Valves[M]. Berlin:Springer Berlin Heidelberg, 2004:391-397.
[16] 王培宇. 工业控制回路非线性检测研究[D]. 杭州:浙江大学, 2015. WANG P Y. Research on nonlinear detection of industrial control loops[D].Hangzhou:Zhejiang University, 2015.
[17] PATWARDHAN R S, SHAH S L, QI K Z. Assessing the performance of model predictive controllers[J]. Canadian Journal of Chemical Engineering, 2002, 80(5):954-966.
[18] SCHAFER J,CINAR A. Multivariable MPC system performance assessment, monitoring, and diagnosis[J]. Process Control, 2004,14(2):113-129.
[19] 张敏敏. 基于模型预测控制的动态多属性决策方法[D]. 北京:北京化工大学,2016. ZHANG M M. Dynamic multi-attribute decision-making method based on model predictive control[D]. Beijing:Beijing University of Chemical Technology, 2016
[20] WANG Z, HAN Y, GENG Z, et al. PID control loop performance assessment and diagnosis based on DEA-related MCDA[C]//International Symposium on Advanced Control of Industrial Processes.New York:IEEE, 2017:535-540.
[21] WEI G. Grey relational analysis model for dynamic hybrid multiple attribute decision making[J]. Knowledge-Based Systems, 2011, 24(5):672-679.
[22] CHEN Y, LI B. Dynamic multi-attribute decision making model based on triangular intuitionistic fuzzy numbers[J]. Scientia Iranica, 2011, 18(2):268-274.
[23] SU X, LI H, JIANG H. Internet of things decision technology based on dynamic multi-attibute decision making[C]//International Conference on Software Intelligence Technologies and Applications & International Conference on Frontiers of Internet of Things. IET, 2014:216-220.
[24] AL-HARBI A S. Application of the AHP in project management[J]. International Journal of Project Management, 2001, 19(1):19-27.
[25] 邓雪, 李家铭, 曾浩健,等. 层次分析法权重计算方法分析及其应用研究[J]. 数学的实践与认识, 2012, 42(7):93-100. DENG X,LI J M,ZENG H J,et al. Analytic hierarchy process weight calculation method analysis and application research[J]. Mathematics in Practice and Theory,2012,42(7):93-100.
[26] ZHI F, TIAN Y, QUAN Z. The sensitivity analysis to attribute values based on the additive weighting model in multiple attribute decision making[J]. Journal of Northeastern University, 2002, 23(1):83-86.
[27] YAGER R R. On ordered weighted averaging aggregation operators in multi-criteria decision making[J]. Readings in Fuzzy Sets for Intelligent Systems, 1993, 18(1):80-87.
[28] CHOUDHURY M A A S, SHAH S L,THORNHILL N F. Diagnosis of poor control-loop performance using higher-order statistics[J]. Automatica, 2004, 40(10):1719-1728.
[29] 韩俊林, 王树青, 谢磊,等. 一种控制阀黏滞特性快速检测方法研究[J]. 化工自动化及仪表, 2010, 37(3):47-51. HAN J L,WANG S Q,XIE L, et al. A study on a rapid detection method of viscous characteristics of control valves[J]. Control and Instruments in Chemical Industry,2010,37(3):47-51.
[30] 王慧芳, 杨荷娟, 何奔腾,等. 输变电设备状态故障率模型改进分析[J]. 电力系统自动化, 2011, 35(16):27-31. WANG H F,YANG H J,HE B T,et al. Improvement analysis of state failure rate model for power transmission equipment[J].Automation of Electric Power Systems,2011,35(16):27-31.
[31] 魏鹏程. DMF回收设备的节能探讨[J]. 聚氨酯工业, 2002, 17(4):43-46. WEI P C. Discussion on energy saving of DMF recovery equipment[J]. Polyurethane Industry,2002,17(4):43-46.
[32] 齐良才, 李宏光. 基于数据驱动的控制器性能多属性评价方法[J]. 华东理工大学学报, 2014, 40(2):244-250. QI L C,LI H G. A multi-attribute assessment method of controller performance based on data-driven[J]. Journal of East China University of Science and Technology,2014,40(2):244-250.
[1] ZHAO Chao, ZHANG Dengfeng, XU Qiaoling, LI Xuelai. Control performance assessment of model predictive control based on statistics analysis of weighted points [J]. CIESC Journal, 2012, 63(12): 3971-3977.
[2] ZHAO Yu, SU Hongye, CHU Jian, GU Yong. Multivariable Control Performance Assessment Based on Generalized Minimum Variance Benchmark [J]. , 2010, 18(1): 86-94.
Full text



[1] ZHANG Yuling, HUANG Junli, CHENG Zhihui, YANG Shilin. Microwave-assisted synthesis of modified polyaspartic acid in solvent[J]. , 2007, 15(3): 458 -462 .
[2] LÜ, Yubin, WEI Feng, SHEN Bo, REN Qilong, WU Pingdong. Modeling, Simulation of a Simulated Moving Bed for Separation of Phosphatidylcholine from Soybean Phospholipids[J]. , 2006, 14(2): 171 -177 .
[3] LUO Zhenghong, CAO Zhikai, SU Yaotang. Monte Carlo Simulation of Propylene Polymerization (Ⅰ) Effects of Impurity on Propylene Polymerization[J]. , 2006, 14(2): 194 -199 .
[4] ZHOU Yunlong, CHEN Fei, SUN Bin. Identification Method of Gas-Liquid Two-phase Flow Regime Based on Image Multi-feature Fusion and Support Vector Machine[J]. , 2008, 16(6): 932 -840 .
[5] SUN Aijun, NIE Yi, LI Chunxi, WANG Zihao. Preparation of Butyl Chloride from Butanol and Hydrochloric Acid Using Ionic Liquids as Catalyst[J]. , 2008, 16(1): 151 -154 .
[6] XU Tan, ZHU Qixin, CHEN Xu, LI Wenping. Equivalent Cake Filtration Model[J]. , 2008, 16(2): 214 -217 .
[7] XIONG Zhihua, ZHANG Jie, DONG Jin. Optimal Iterative Learning Control for Batch Processes Based on Linear Time-varying Perturbation Model[J]. , 2008, 16(2): 235 -240 .
[8] TONG Junmao, WU Zhansheng, SUN Xifang, XU Xiaolin, LI Chun. Adsorption Kinetics of β-Carotene and Chlorophyll onto Acid-activated Bentonite in Model Oil[J]. , 2008, 16(2): 270 -276 .
[9] LÜ Guocheng, CHENG Haidong, XU Chunchun, HE Zonghu. Effect of Strain and Chloride Concentration on Pitting Susceptibility for Type 304 Austenitic Stainless Steel[J]. , 2008, 16(2): 314 -319 .
[10] YE Guoxiang, L� Xiaoping, PENG Fei, HAN Pingfang, SHEN Xuan. Pretreatment of Crude Oil by Ultrasonic-electric United Desalting and Dewatering[J]. , 2008, 16(4): 564 -569 .