化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2696-2704.DOI: 10.11949/0438-1157.20191533
姚春1(),黄龙龙1,常江伟1,丁一旺1,于畅1(),邱介山2()
收稿日期:
2019-12-17
修回日期:
2020-02-26
出版日期:
2020-06-05
发布日期:
2020-06-05
通讯作者:
于畅,邱介山
作者简介:
姚春(1995—),女,硕士研究生,基金资助:
Chun YAO1(),Longlong HUANG1,Jiangwei CHANG1,Yiwang DING1,Chang YU1(),Jieshan QIU2()
Received:
2019-12-17
Revised:
2020-02-26
Online:
2020-06-05
Published:
2020-06-05
Contact:
Chang YU,Jieshan QIU
摘要:
研究对比了商业化碳分子筛(CMS)、多壁碳纳米管、活性炭和还原氧化石墨烯四种碳材料的I3-还原性能。采用场发射扫描电镜、高倍率透射电镜、X射线衍射等技术手段表征了材料的微观结构特征,结合循环伏安(CV)和光电转换测试(I-V)结果,解耦了材料的构效关系。结果发现,以CMS为对电极组装的DSSCs的光电转换效率最高,达7.46%。在此基础上,研究考察了高温退火处理对CMS的微观结构、性质和性能的影响,揭示了影响I3-还原性能的关键因素。结果表明,800℃处理的样品CMS800光电转换效率高达8.56%,明显优于贵金属Pt对电极,同时表现出优于Pt的电化学稳定性。
中图分类号:
姚春, 黄龙龙, 常江伟, 丁一旺, 于畅, 邱介山. 碳分子筛的优化设计及其I3-还原性能研究[J]. 化工学报, 2020, 71(6): 2696-2704.
Chun YAO, Longlong HUANG, Jiangwei CHANG, Yiwang DING, Chang YU, Jieshan QIU. Optimization design of carbon molecular sieves and its I3- reduction performance[J]. CIESC Journal, 2020, 71(6): 2696-2704.
图1 CMS(a),MWCNT(b),AC(c),RGO(d)的FESEM图;CMS的HRTEM图(e)和热重曲线(f)
Fig.1 FESEM images of CMS(a), MWCNT (b), AC (c) and RGO (d); HRTEM image (e) and thermogravimetric analysis curve (f) of CMS
图2 CMS、AC、MWCNT和RGO的XRD谱图(a),拉曼谱图(b),氮气吸附/脱附等温线(c)和孔径分布图(d)
Fig.2 XRD patterns (a), Raman spectra (b), nitrogen adsorption and desorption isotherms (c) and the pore size distribution (d) of CMS, AC, MWCNT and RGO
图3 AC、MWCNT、RGO、CMS对电极的CV曲线(a),EIS谱图(插图是放大图和等效电路图)(b),Tafel曲线(c)和J-V曲线(d)
Fig.3 CV curves of various CEs(a); Nyquist plots curves (inset is the magnified plots and equivalent circuits) (b); Tafel curves of the symmetrical dummy cells assembled by various CEs (c) and J-V curves of DSSCs based on various CEs (d)
对电极 | Rs /(Ω·cm2) | Rct/(Ω·cm2) |
---|---|---|
AC | 5.76 | 5.81 |
MWCNT | 5.24 | 0.41 |
RGO | 4.88 | 5.90 |
CMS | 5.12 | 2.23 |
表1 不同对电极的电化学参数(源于EIS谱)
Table 1 Electrochemical parameters derived from EIS measurements for various CEs
对电极 | Rs /(Ω·cm2) | Rct/(Ω·cm2) |
---|---|---|
AC | 5.76 | 5.81 |
MWCNT | 5.24 | 0.41 |
RGO | 4.88 | 5.90 |
CMS | 5.12 | 2.23 |
对电极 | Voc/V | Jsc/(mA·cm-2) | FF | PCE/% |
---|---|---|---|---|
AC | 0.77 | 14.79 | 0.61 | 6.88 |
MWCNT | 0.71 | 13.78 | 0.66 | 6.41 |
RGO | 0.78 | 14.92 | 0.61 | 7.13 |
CMS | 0.74 | 16.59 | 0.61 | 7.46 |
表2 不同对电极的光伏性能参数
Table 2 Photovoltaic parameters for various CEs
对电极 | Voc/V | Jsc/(mA·cm-2) | FF | PCE/% |
---|---|---|---|---|
AC | 0.77 | 14.79 | 0.61 | 6.88 |
MWCNT | 0.71 | 13.78 | 0.66 | 6.41 |
RGO | 0.78 | 14.92 | 0.61 | 7.13 |
CMS | 0.74 | 16.59 | 0.61 | 7.46 |
图4 CMS(a)和CMS800(b)的FESEM图;CMS、CMS600、CMS800和CMS1000的XRD谱图(c)和拉曼谱图(d)
Fig.4 FESEM images of CMS (a) and CMS800 (b) samples; XRD patterns (c) and Raman spectra (d) of CMS, CMS600, CMS800 and CMS1000 samples
图5 CMS800和Pt对电极的CV曲线(a);CMS600、CMS800、CMS1000和Pt对电极的EIS谱图(插图是放大图和等效电路图)(b),Tafel曲线(c)和J-V曲线(d)
Fig.5 CV curves for CMS800 and Pt CEs(a); Nyquist plots curves (inset is the magnified plots and equivalent circuits) (b) and Tafel curves (c) of the symmetrical dummy cells assembled by various CEs; J-V curves of DSSCs based on various CEs (d)
对电极 | Rs /(Ω·cm2) | Rct /(Ω·cm2) |
---|---|---|
CMS600 | 5.56 | 2.02 |
CMS800 | 5.00 | 1.03 |
CMS1000 | 5.01 | 1.31 |
Pt | 9.78 | 1.08 |
表3 不同对电极的电化学参数(源于EIS谱)
Table 3 Electrochemical parameters derived from EIS measurements for various CEs
对电极 | Rs /(Ω·cm2) | Rct /(Ω·cm2) |
---|---|---|
CMS600 | 5.56 | 2.02 |
CMS800 | 5.00 | 1.03 |
CMS1000 | 5.01 | 1.31 |
Pt | 9.78 | 1.08 |
对电极 | Voc/V | Jsc/(mA·cm-2) | FF | PCE/% |
---|---|---|---|---|
CMS600 | 0.73 | 16.01 | 0.65 | 7.65 |
CMS800 | 0.75 | 17.03 | 0.67 | 8.56 |
CMS1000 | 0.74 | 15.56 | 0.69 | 8.04 |
Pt | 0.71 | 13.31 | 0.69 | 6.53 |
表4 不同对电极的光伏性能参数
Table 4 Photovoltaic parameters for various CEs
对电极 | Voc/V | Jsc/(mA·cm-2) | FF | PCE/% |
---|---|---|---|---|
CMS600 | 0.73 | 16.01 | 0.65 | 7.65 |
CMS800 | 0.75 | 17.03 | 0.67 | 8.56 |
CMS1000 | 0.74 | 15.56 | 0.69 | 8.04 |
Pt | 0.71 | 13.31 | 0.69 | 6.53 |
图6 CMS800(a)和Pt(b)对电极组装成假电池的电化学稳定性测试图;基于EIS测试的两种电极的Rct变化曲线(c)
Fig.6 Electrochemical stability of CMS800 (a) and Pt (b) dummy cells, the EIS tests were repeated for 10 times (inset is the equivalent circuits); Rct changes of CMS800 and Pt CEs versus the EIS scan number (c)
26 | Yu C, Liu Z Q, Chen Y W, et al. CoS nanosheets-coupled graphene quantum dots architectures as a binder-free counter electrode for high-performance DSSCs [J]. Science China Materials, 2016, 59(2): 104-111. |
27 | Rungta M, Wenz G B, Zhang C, et al. Carbon molecular sieve structure development and membrane performance relationships [J]. Carbon, 2017, 115: 237-248. |
1 | Mahmoud M S, Akhtar M S, Mohamed I M A, et al. Demonstrated photons to electron activity of S-doped TiO2 nanofibers as photoanode in the DSSC [J]. Materials Letters, 2018, 225: 77-81. |
2 | Chen J, Li X, Wu W J, et al. A fast approach to optimize dye loading of photoanode via ultrasonic technique for highly efficient dye-sensitized solar cells [J]. Journal of Energy Chemistry, 2015, 24(6): 750-755. |
28 | Zhou Y W, Wang Y C, Ban Y J, et al. Carbon molecular sieving membranes for butane isomer separation [J]. AIChE Journal, 2019, 65(11): 16749. |
29 | Zhang S W, Lv W, Luo C, et al. Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries [J]. Energy Storage Materials, 2016, 3: 18-23. |
3 | Mathew S, Yella A, Gao P, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers [J]. Nature Chemistry, 2014, 6: 242-247. |
4 | Soman S, Pradhan S C, Yoosuf M, et al. Probing recombination mechanism and realization of marcus normal region behavior in DSSCs employing cobalt electrolytes and triphenylamine dyes [J]. The Journal of Physical Chemistry C, 2018, 122(25): 14113-14127. |
5 | Freitag M, Teuscher J, Saygili Y, et al. Dye-sensitized solar cells for efficient power generation under ambient lighting [J]. Nature Photonics, 2017, 11: 372-378. |
6 | Wu K Z, Chen L, Cui W Z, et al. The effect of transition metal ions (M2+=Mn2+, Ni2+, Co2+, Cu2+) on the chemical synthesis polyaniline as counter electrodes in dye-sensitized solar cells [J]. Chinese Journal of Chemical Engineering, 2017, 25(5): 671-675. |
30 | Meng X T, Yu C, Song X D, et al. Scrutinizing defects and defect density of selenium-doped graphene for high-efficiency triiodide reduction in dye-sensitized solar cells [J]. Angewandte Chemie International Edition, 2018, 57(17): 4682-4686. |
31 | Sarkar A, Chakraborty A K, Bera S. NiS/rGO nanohybrid: an excellent counter electrode for dye sensitized solar cell [J]. Solar Energy Materials and Solar Cells, 2018, 182: 314-320. |
7 | Yu C, Meng X T, Song X D, et al. Graphene-mediated highly-dispersed MoS2 nanosheets with enhanced triiodide reduction activity for dye-sensitized solar cells [J]. Carbon, 2016, 100: 474-483. |
8 | Wu J H, Lan Z, Lin J M, et al. Counter electrodes in dye-sensitized solar cells [J]. Chemical Society Reviews, 2017, 46(19): 5975-6023. |
9 | Fang H Q, Yu C, Ma T L, et al. Boron-doped graphene as a high-efficiency counter electrode for dye-sensitized solar cells [J]. Chemical Communications, 2014, 50(25): 3328-3330. |
10 | Meng X T, Yu C, Song X D, et al. Nitrogen-doped graphene nanoribbons with surface enriched active sites and enhanced performance for dye-sensitized solar cells [J]. Advanced Energy Materials, 2015, 5(11): 1500180. |
11 | Regan B O, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353(6346): 737-740. |
12 | Meng X T, Yu C, Lu B, et al. Dual integration system endowing two-dimensional titanium disulfide with enhanced triiodide reduction performance in dye-sensitized solar cells [J]. Nano Energy, 2016, 22: 59-69. |
13 | Yao Z Y, Zhang M, Wu H, et al. Donor/acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells [J]. Journal of the American Chemical Society, 2015, 137(11): 3799-3802. |
14 | Yu C, Fang H Q, Liu Z Q, et al. Chemically grafting graphene oxide to B, N co-doped graphene via ionic liquid and their superior performance for triiodide reduction [J]. Nano Energy, 2016, 25: 184-192. |
15 | Meng X T, Yu C, Son X D, et al. Rational design and fabrication of sulfur-doped porous graphene with enhanced performance as a counter electrode in dye-sensitized solar cells [J]. Journal of Materials Chemistry A, 2017, 5(5): 2280-2287. |
16 | 徐顺建. 9种树叶生物炭作为染料敏化太阳电池对电极的光电性能 [J]. 化工学报, 2016, 67(11): 4851-4857. |
Xu S J. Photovoltaic properties of 9 natural leaves derived biochars as counter electrodes for dye-sensitized solar cells [J]. CIESC Journal, 2016, 67(11): 4851-4857. | |
17 | Xing Y D, Zheng X J, Wu Y H, et al. Nitrogen-doped carbon nanotubes with metal nanoparticles as counter electrode materials for dye-sensitized solar cells [J]. Chemical Communications, 2015, 51(38): 8146-8149. |
18 | Yu C, Liu Z Q, Meng X T, et al. Nitrogen and phosphorus dual-doped graphene as a metal-free high-efficiency electrocatalyst for triiodide reduction [J]. Nanoscale, 2016, 8(40): 17458-17464. |
19 | Meng X T, Yu C, Zhang X P, et al. Active sites-enriched carbon matrix enables efficient triiodide reduction in dye-sensitized solar cells: an understanding of the active centers [J]. Nano Energy, 2018, 54: 138-147. |
20 | Chang P J, Cheng K Y, Chou S W, et al. Tri-iodide reduction activity of shape- and composition-controlled PtFe nanostructures as counter electrodes in dye-sensitized solar cells [J]. Chemistry of Materials, 2016, 28(7): 2110-2119. |
21 | Liu T S, Zhao Y Y, Duan J L, et al. Transparent ternary alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells [J]. Solar Energy, 2018, 170: 762-768. |
22 | Zhang J B, Hao Y, Yang L, et al. Electrochemically polymerized poly (3, 4-phenylenedioxythiophene) as efficient and transparent counter electrode for dye sensitized solar cells [J]. Electrochimica Acta, 2019, 300: 482-488. |
23 | Nemala S S, Kartikay P, Agrawal R K, et al. Few layers graphene based conductive composite inks for Pt free stainless steel counter electrodes for DSSC [J]. Solar Energy, 2018, 169: 67-74. |
24 | Ren H, Shao H, Zhang L J, et al. A new graphdiyne nanosheet/Pt nanoparticle-based counter electrode material with enhanced catalytic activity for dye-sensitized solar cells [J]. Advanced Energy Materials, 2015, 5(12): 1500296. |
25 | Wang Z H, Lu B, Meng X T, et al. Graphene oxide induced fabrication of pillared and double-faced polyaniline arrays with enhanced triiodide reduction capability [J]. Electrochimica Acta, 2017, 252: 84-90. |
[1] | 王伟, 钱伟鑫, 马宏方, 应卫勇, 张海涛. 吡啶修饰H-MOR上二甲醚羰基化吸附-扩散理论研究[J]. 化工学报, 2021, 72(9): 4786-4795. |
[2] | 于程远, 吴金奎, 周利, 吉旭, 戴一阳, 党亚固. 基于深度学习预测有机光伏电池能量转换效率[J]. 化工学报, 2021, 72(3): 1487-1495. |
[3] | 任雪宇, 曹景沛, 姚乃瑜, 赵小燕, 冯晓博, 刘天龙, 赵云鹏. 模板法调控多级孔ZSM-5催化褐煤挥发分制备轻质芳烃的研究[J]. 化工学报, 2021, 72(11): 5620-5632. |
[4] | 姚淑华, 陈爽, 邹沛宸, 石磊, 石中亮. 磷钨酸掺杂二氧化钛光催化剂的吸附性能及光催化活性[J]. 化工学报, 2015, 66(9): 3456-3461. |
[5] | 魏玲, 谭猗生, 韩怡卓, 赵建涛. 煤焦中灰成分对甲烷裂解的影响[J]. 化工学报, 2015, 66(9): 3733-3738. |
[6] | 张贺, 张辉, 刘应书, 郝智天, 焦璐璐, 赵梓伶. pH法监测MEA溶液吸收CO2反应进程[J]. 化工学报, 2015, 66(5): 1777-1784. |
[7] | 付乔明, 赵春贵, 杨素萍. 3种紫细菌天然光合色素敏化DSSC光电转化性能[J]. 化工学报, 2014, 65(8): 3202-3211. |
[8] | 耿蕊1,2,路胜利2,高建荣1. 染料敏化太阳能电池中TiO2光阳极形貌研究进展[J]. 化工进展, 2014, 33(02): 412-417. |
[9] | 邢俊恒,夏正斌,张燕红,钟 理. 阳极氧化参数对TiO2薄膜结晶行为影响的研究进展[J]. 化工进展, 2013, 32(03): 592-598. |
[10] | 孙旭辉1,2,包塔娜1,张凌云1,张国华1,王维广1. 染料敏化太阳能电池的研究进展[J]. 化工进展, 2012, 31(01 ): 47-52. |
[11] | 滕文娟, 毛信表, 马淳安. 活性炭载碳化钨复合材料的制备及其对对硝基苯酚的电催化性能 [J]. 化工学报, 2010, 61(5): 1313-1318. |
[12] | 石建稳,陈少华,王淑梅,罗红元. 纳米二氧化钛光催化剂共掺杂的协同效应 [J]. CIESC Journal, 2009, 28(2): 251-. |
[13] | 薛屏, 刘海峰, 杨金会. 亲水性环氧聚合物磁性微球的制备及其固定化青霉素酰化酶 [J]. 化工学报, 2008, 59(2): 443-449. |
[14] | 王晓娟, 马淳安, 李国华, 沈田君. 碳化钨/碳纳米管纳米复合材料的制备及其对硝基苯的电催化活性 [J]. 化工学报, 2008, 59(11): 2904-2909. |
[15] | 姜洪泉;王鹏;卢丹丹;吴兰英. Gd3+掺杂TiO2纳米粉体的晶粒尺寸、表面特性和光催化活性 [J]. CIESC Journal, 2006, 57(9): 2194-2200. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||