化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4786-4795.doi: 10.11949/0438-1157.20201921

• 分离工程 • 上一篇    下一篇

吡啶修饰H-MOR上二甲醚羰基化吸附-扩散理论研究

王伟(),钱伟鑫,马宏方,应卫勇,张海涛()   

  1. 华东理工大学化学工程联合国家重点实验室,大型反应器工程与技术研究中心 上海 200237
  • 收稿日期:2020-12-28 修回日期:2021-06-14 出版日期:2021-09-05 发布日期:2021-09-05
  • 通讯作者: 张海涛 E-mail:wkessel528@163.com;zht@ecust.edu.cn
  • 作者简介:王伟(1996—),男,硕士研究生,wkessel528@163.com
  • 基金资助:
    中央高校基本科研业务费专项资金(222201917013)

A theoretical study on adsorption-diffusion of dimethyl ether carbonylation on pyridine-modified H-MOR

Wei WANG(),Weixing QIAN,Hongfang MA,Weiyong YING,Haitao ZHANG()   

  1. Engineering Research Centre of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2020-12-28 Revised:2021-06-14 Published:2021-09-05 Online:2021-09-05
  • Contact: Haitao ZHANG E-mail:wkessel528@163.com;zht@ecust.edu.cn

摘要:

氢型丝光沸石(H-MOR)分子筛是二甲醚(DME)羰基化制乙酸甲酯(MA)的一种高效催化剂,经研究吡啶的修饰可以有效提高其稳定性及催化寿命。为了从原子尺度上研究吡啶对其改性的本质机理,基于Monte Carlo及分子动力学模拟,分别对H-AlMOR及Py-H-AlMOR周期性模型内羰基化主反应物CO、DME及产物MA的吸附-扩散行为进行了对比研究。结果表明,吡啶的引入会使H-MOR分子筛模型内主反应物CO、DME的吸附量产生一定下降(24%~33%),但有助于改善二者分子筛内的吸附平衡,并提升活性孔道8-MR内的反应物浓度。同时,吡啶引入后将对各分子扩散产生较大影响(21%~58%),尤其产物MA扩散性能下降约58%。此外,吡啶的引入也会使达到高反应活性所需的高进料比PCO/PDME有所降低。

关键词: 分子筛, 选择性催化, 催化活性, 吸附, 扩散, Monte Carlo模拟

Abstract:

Hydrogen mordenite (H-MOR) zeolite molecular sieve is an efficient catalyst for the carbonylation of dimethyl ether (DME) to methyl acetate (MA). The modification of pyridine can effectively improve its stability and catalytic life. In order to study the essential mechanism of pyridine modification on the atomic scale, based on Monte Carlo and molecular dynamics simulations, this paper analyzes the main reactants CO, DME and products of carbonylation in the periodic models of H-AlMOR and Py-H-AlMOR, respectively. The adsorption-diffusion behavior of MA has been systematically compared. The results show that the introduction of pyridine will reduce the adsorption capacity of the main reactants CO and DME in the H-MOR molecular sieve to a certain extent (24%—33%), but it helps to improve the adsorption balance of the two in the molecular sieve and increase the concentration of reactants in the active channel 8-MR. At the same time, the introduction of pyridine will have a greater impact on the diffusion of various molecules (21%—58%), especially the diffusion performance of the product MA decreases by about 58%. In addition, the introduction of pyridine can also reduce the high feed ratio PCO/PDME required to achieve high reactivity.

Key words: molecular sieve, selective catalysis, catalytic activity, adsorption, diffusion, Monte Carlo simulation

中图分类号: 

  • TQ 225

图1

H-MOR分子筛内部不等价原子示意图(Si及O)"

图2

计算用Py-H-MOR(2×1×1)模型示意图(以Py-Al-T1O7为例)"

表1

于493 K-2.5 MPa z轴延伸方向不同周期性模型中主要反应物及产物分子的平均吸附量(Nads)和吸附能(Eads) (以Al-T1O7为例)"

分子/模型Nads/(mol/mol)Eads/(kcal/mol)
CODMEMACODMEMA
Py-H-AlMOR (2×1×1)3.5048.6662.957-5.167-11.270-13.085
Py-H-AlMOR (2×1×2)7.03917.4346.154-5.179-11.421-13.177

图3

129Xe于213 K在MOR(2×1×1)周期模型上的吸附密度分布 (a) 参照实验213 K下不同压力下129Xe的NMR光谱(b)"

图4

MOR(2×1×1)周期模型内CH4分子于493 K下均方位移(MSD)与模拟时间关系"

表2

于493 K-2.5 MPa各模型中主要反应物及产物分子的平均吸附量(Nads)和吸附能(Eads)"

模型/分子Nads/(mol/mol)Eads/(kcal/mol)
CODMEMACODMEMA
Al-T1O74.53112.8157.550-4.902-12.241-14.856
Py-Al-T1O73.5048.6662.957-5.167-11.270-13.085
Al-T2O24.45913.5198.150-4.904-12.298-15.772
Py-Al-T2O23.4628.9882.785-5.198-11.313-13.085
Al-T3O14.63212.3387.254-4.917-12.328-15.201
Py-Al-T3O13.4328.6953.107-5.196-11.263-13.142
Al-T4O24.48913.4447.949-4.893-12.143-14.516
Py-Al-T4O23.3598.2242.777-5.195-11.251-13.062

图5

493 K-2.5 MPa各模型中主要反应物及产物分子的吸附密度(以Al-T1O7为例)"

图6

纯净气各分子于493 K下均方位移(MSD)与模拟时间关系图(5分子/模型)"

图7

无吡啶修饰不同酸性位模型中于493 K-2.5 MPa不同进料比下混合物的平均吸附量Nads"

图8

含吡啶修饰不同酸性位模型中于493 K-2.5 MPa不同进料比下混合物的平均吸附量Nads"

表3

H-AlMOR模型于493 K-2.5 MPa不同进料比下CO和DME的平均吸附量比"

PCO/PDMECO/DME吸附量比值
Al-T1O7Al-T2O2Al-T3O1Al-T4O2
1∶10.0450.0580.0480.055
2∶10.0820.0980.0820.092
5∶10.2270.2220.3020.280
10∶10.4170.4500.4220.402
20∶10.7940.8470.8000.758
27∶1(opt)0.9900.9711.0201.042
50∶11.7541.7242.0001.754

表4

Py-H-AlMOR模型于493 K-2.5 MPa不同进料比下CO和DME的平均吸附量比"

PCO/PDMECO/DME吸附量比值
Py-Al- T1O7Py-Al- T2O2Py-Al- T3O1Py-Al- T4O2
1∶10.2990.2670.2700.269
2∶10.4270.3910.4020.385
5∶10.9340.8550.9260.926
8∶1(opt)0.9801.0001.0420.990
10∶11.0531.0531.1111.075
20∶11.7241.7541.6671.754
50∶13.5713.4483.2263.226
1 Boronat M, Martínez-Sánchez C, Law D, et al. Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO[J]. Journal of the American Chemical Society, 2008, 130(48): 16316-16323.
2 Rasmussen D B, Christensen J M, Temel B, et al. Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite[J]. Angewandte Chemie International Edition, 2015, 54(25): 7261-7264.
3 Li X J, Liu X H, Liu S L, et al. Activity enhancement of ZSM-35 in dimethyl ether carbonylation reaction through alkaline modifications[J]. RSC Advances, 2013, 3(37): 16549.
4 Zhou H, Zhu W L, Shi L, et al. Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate[J]. Catalysis Science & Technology, 2015, 5(3): 1961-1968.
5 宋庆锋, 张勇, 曾清湖. 合成气直接转化制乙醇工艺路线的技术经济分析[J]. 工业催化, 2013, 21(6): 17-21.
Song Q F, Zhang Y, Zeng Q H. Techno-economic analysis of production process of syngas to ethanol[J]. Industrial Catalysis, 2013, 21(6): 17-21.
6 王辉, 吴志连, 邰志军, 等. 合成气经二甲醚羰基化及乙酸甲酯加氢制无水乙醇的研究进展[J]. 化工进展, 2019, 38(10): 4497-4503.
Wang H, Wu Z L, Tai Z J, et al. Advances in synthesis of anhydrous ethanol from syngas via carbonylation of dimethyl ether and hydrogenation of methyl acetate[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4497-4503.
7 Bhan A, Iglesia E. A link between reactivity and local structure in acid catalysis on zeolites[J]. Accounts of Chemical Research, 2008, 41(4): 559-567.
8 Cheung P, Bhan A, Sunley G J, et al. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites[J]. Journal of Catalysis, 2007, 245(1): 110-123.
9 Cheung P, Bhan A, Sunley G J, et al. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J]. Angewandte Chemie International Edition, 2006, 45(10): 1617-1620.
10 Bhan A, Allian A D, Sunley G J, et al. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls[J]. Journal of the American Chemical Society, 2007, 129(16): 4919-4924.
11 Feng P, Zhang G Q, Zang K L, et al. A theoretical study on the selective adsorption behavior of dimethyl ether and carbon monoxide on H-FER zeolites[J]. Chemical Physics Letters, 2017, 684: 279-284.
12 Li B J, Xu J, Han B, et al. Insight into dimethyl ether carbonylation reaction over mordenite zeolite from in situ solid-state NMR spectroscopy[J]. The Journal of Physical Chemistry C, 2013, 117(11): 5840-5847.
13 Boronat M, Martínez C, Corma A. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite[J]. Physical Chemistry Chemical Physics, 2011, 13(7): 2603-2612.
14 Rasmussen D B, Christensen J M, Temel B, et al. Reaction mechanism of dimethyl ether carbonylation to methyl acetate over mordenite-a combined DFT/experimental study[J]. Catalysis Science & Technology, 2017, 7(5): 1141-1152.
15 赵娜, 牛君阳, 刘亚华, 等. 预处理条件及金属离子改性对H-MOR分子筛的DME羰基化性能影响[J]. 化工学报, 2015, 66(9): 3504-3510.
Zhao N, Niu J Y, Liu Y H, et al. Influence of pretreatment and metal cation modification of H-MOR zeolite on performance of DME carbonylation[J]. CIESC Journal, 2015, 66(9): 3504-3510.
16 Wang M X, Huang S Y, Lyu J, et al. Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether[J]. Chinese Journal of Catalysis, 2016, 37(9): 1530-1537.
17 Liu J L, Xue H F, Huang X M, et al. Stability enhancement of H-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine[J]. Chinese Journal of Catalysis, 2010, 31(7): 729-738.
18 袁淑萍, 段云波, 王建国, 等. 吡啶在H-MOR分子筛孔道中吸附的量子化学研究[J]. 催化学报, 2006, 27(8): 664-670.
Yuan S P, Duan Y B, Wang J G, et al. Study on pyridine adsorption in H-MOR by quantum chemistry[J]. Chinese Journal of Catalysis, 2006, 27(8): 664-670.
19 Sano T, Wakabayashi S, Oumi Y, et al. Synthesis of large mordenite crystals in the presence of aliphatic alcohol[J]. Microporous and Mesoporous Materials, 2001, 46(1): 67-74.
20 Millini R, Frigerio F, Bellussi G, et al. A priori selection of shape-selective zeolite catalysts for the synthesis of 2, 6-dimethylnaphthalene[J]. Journal of Catalysis, 2003, 217(2): 298-309.
21 Cox S D, Gier T E, Stucky G D, et al. Inclusion tuning of nonlinear optical materials: switching the SHG of p-nitroaniline and 2-methyl-p-nitroaniline with molecular sieve hosts[J]. Journal of the American Chemical Society, 1988, 110(9): 2986-2987.
22 Chibani S, Chebbi M, Lebègue S, et al. A DFT investigation of the adsorption of iodine compounds and water in H-, Na-, Ag-, and Cu-mordenite[J]. The Journal of Chemical Physics, 2016, 144(24): 244705.
23 Liu Z Q, Yi X F, Wang G R, et al. Roles of 8-ring and 12-ring channels in mordenite for carbonylation reaction: from the perspective of molecular adsorption and diffusion[J]. Journal of Catalysis, 2019, 369: 335-344.
24 Baerlocher C, McCusker L B, Liu Z. Database of Zeolite Structures[EB/OL]. [2019-12-10]. .
25 Meunier M. Introduction to Materials Studio[J]. EPJ Web of Conferences, 2012, 30: 04001.
26 Akten E D, Siriwardane R, Sholl D S. Monte Carlo simulation of single-and binary-component adsorption of CO2, N2, and H2 in zeolite Na-4A[J]. Energy & Fuels, 2003, 17(4): 977-983.
27 Dunne L J, Manos G, Du Z M. Exact statistical mechanical one-dimensional lattice model of alkane binary mixture adsorption in zeolites and comparision with Monte-Carlo simulations[J]. Chemical Physics Letters, 2003, 377(5/6): 551-556.
28 殷开梁, 邹定辉, 杨波, 等. Materials Studio软件涉及力场中氢键的研究[J]. 计算机与应用化学, 2006, 23(12): 1335-1340.
Yin K L, Zou D H, Yang B, et al. Investigation of H-bonding for the related force fields in materials studio software[J]. Computers and Applied Chemistry, 2006, 23(12): 1335-1340.
29 Wu C F, Xu W J. Atomistic simulation study of absorbed water influence on structure and properties of crosslinked epoxy resin[J]. Polymer, 2007, 48(18): 5440-5448.
30 Sun H. COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds[J]. The Journal of Physical Chemistry B, 1998, 102(38): 7338-7364.
31 Wang C M, Li B W, Wang Y D, et al. Insight into the topology effect on the diffusion of ethene and propene in zeolites: a molecular dynamics simulation study[J]. Journal of Energy Chemistry, 2013, 22(6): 914-918.
32 Wu J Y, Liu Q L, Xiong Y, et al. Molecular simulation of water/alcohol mixtures‍' adsorption and diffusion in zeolite 4A membranes[J]. The Journal of Physical Chemistry B, 2009, 113(13): 4267-4274.
33 Zhou J, Zhou T R. Material structure simulation techniques and applications[J]. Materials Science Forum, 2007, 561/562/563/564/565: 1793-1796.
34 Frenkel D, Smit B. Monte Carlo simulations in various ensembles[M]//Understanding Molecular Simulation. Amsterdam: Elsevier, 2002: 111-137.
35 He T, Liu X C, Xu S T, et al. Role of 12-ring channels of mordenite in DME carbonylation investigated by solid-state NMR[J]. The Journal of Physical Chemistry C, 2016, 120(39): 22526-22531.
[1] 唐靖轩, 刘轶伦, 何巍, 沈旭柱, 王勤, 陈光明. 双进双出气泡泵输送性能[J]. 化工学报, 2021, 72(S1): 140-145.
[2] 李腾飞, 缪赟, 杨柳, 王龙耀, 朱铧丞. 微波强化Y型分子筛离子交换技术[J]. 化工学报, 2021, 72(S1): 406-412.
[3] 吴中杰, 刘则艳, 谢连科, 崔美, 黄仁亮. 聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用[J]. 化工学报, 2021, 72(S1): 421-429.
[4] 吴俊晔, 葛天舒, 吴宣楠, 代彦军, 王如竹. 基于吸附剂/木浆纤维纸耦合材料的空气净化[J]. 化工学报, 2021, 72(S1): 520-529.
[5] 罗伟莉, 王雯雯, 潘权稳, 葛天舒, 王如竹. 基于活性碳纤维毡复合吸附剂的储热性能[J]. 化工学报, 2021, 72(S1): 554-559.
[6] 张牧星, 张小松, 丁烨, 宋翼. 氧化石墨烯膜间距对电渗析空气除湿特性影响的分子动力学研究[J]. 化工学报, 2021, 72(S1): 63-69.
[7] 温怡静, 张博, 陈晓霏, 赵思洋, 周欣, 黄艳, 李忠. 多孔炭吸附剂的乙烯-乙烷选择性反转机制[J]. 化工学报, 2021, 72(9): 4768-4774.
[8] 耿晨旭, 孙玉绣, 黄宏亮, 郭翔宇, 乔志华, 仲崇立. 机械化学法合成小尺寸MOF填料助力高性能CO2分离[J]. 化工学报, 2021, 72(9): 4750-4758.
[9] 李媛, 张飞飞, 王丽, 杨江峰, 李立博, 李晋平. MIL-101Cr-F/Cl用于N2O的捕集研究[J]. 化工学报, 2021, 72(9): 4759-4767.
[10] 演康, 杨颂, 刘守军, 杨超, 樊惠玲, 上官炬. 低阶煤原位制备ZnO基活性炭脱硫剂[J]. 化工学报, 2021, 72(9): 4921-4930.
[11] 彭蕾, 姜岩, 夏如馨. 微生物修复Cr(Ⅵ)污染作用机制及研究进展[J]. 化工学报, 2021, 72(9): 4458-4468.
[12] 王芳,贾胜坤,张会书,袁希钢,余国琮. 基于实验数据的湍流扩散POD模态分析[J]. 化工学报, 2021, 72(9): 4531-4543.
[13] 马生贵, 田博文, 周雨薇, 陈琳, 江霞, 高涛. 氮掺杂Stone-Wales缺陷石墨烯吸附H2S的密度泛函理论研究[J]. 化工学报, 2021, 72(9): 4496-4503.
[14] 梁家豪, 张国强, 高源, 尹娇, 郑华艳, 李忠. 介孔构建对CuY甲醇氧化羰基化反应活性的影响[J]. 化工学报, 2021, 72(9): 4685-4697.
[15] 李泽严, 樊星, 李坚. 非热等离子体强化TiO2催化尿素分解副产物水解性能的研究[J]. 化工学报, 2021, 72(9): 4698-4707.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PatrickPERRE. 硬木中流体移动的双尺度多孔机理的依据(Ⅱ)描述实验结果的双尺度计算模型[J]. CIESC Journal, 2004, 12(6): 783 -791 .
[2] 刘植昌, 孟祥海, 徐春明, 高金森. 重油催化裂解汽柴油二次裂解性能研究[J]. CIESC Journal, 2007, 15(3): 309 -314 .
[3] 黄福明,张国伟,胡春圃,应圣康. 硅溶胶/苯乙烯-丙烯酸酯共聚物无机-有机杂化水分散液的制备和表征[J]. CIESC Journal, 2005, 13(6): 816 -823 .
[4] 张宇,周力行,魏小林,盛宏至. 进口甲烷再燃烧对煤粉燃烧以及NOx生成影响的数值模拟[J]. CIESC Journal, 2005, 13(3): 318 -323 .
[5] 郑裕国, 陈小龙, 汪钊, 沈寅初. 低高径比外循环气升式生物反应器带渣发酵生产有效霉素[J]. CIESC Journal, 2004, 12(1): 102 -107 .
[6] 唐致远, 冯季军, 彭亚宁. 采用不同锰源合成尖晶石LiMn2O4正极材料[J]. CIESC Journal, 2004, 12(1): 124 -127 .
[7] 罗艳托, 朱建华, 陈光进. 鼓泡塔中水合物法分离混合气体的数值模拟[J]. CIESC Journal, 2007, 15(3): 345 -352 .
[8] 王斐, 汪文川, 黄世萍, 滕加伟, 谢在库. 正丁烷及丁烯-1在不同硅铝比ZSM-5分子筛上吸附的实验与模型[J]. CIESC Journal, 2007, 15(3): 376 -386 .
[9] 李良智, 乔斌, 元英进. 氮源对利迪链菌素生产及相关次级代谢物分布的影响[J]. CIESC Journal, 2007, 15(3): 403 -410 .
[10] 刘亚青, 赵贵哲. 三聚氯化磷腈微胶囊阻燃剂/聚丙烯复合材料的性能研究[J]. CIESC Journal, 2007, 15(3): 429 -432 .