1 |
胡兴军. 锂: 市场前景极为广阔[J]. 中国金属通报, 2011(9): 26-28.
|
|
Hu X J. Lithium: the market prospect is broad [J]. China Metal Bulletin, 2011, (9): 26-28.
|
2 |
周园园. 中国锂资源供需形势及对外依存度分析[J]. 资源与产业, 2019, 21(3): 46-50.
|
|
Zhou Y Y. Supply-demand situation and external dependence of China's lithium resource[J]. Resources & Industries, 2019, 21(3): 46-50.
|
3 |
Bernhardt D, Reilly Ⅱ J F. Minerals Commodity Summaries 2019[R]. Reston:
|
|
Geological Survey U. S., 2019.
|
4 |
苏彤, 郭敏, 刘忠, 等. 全球锂资源综合评述[J]. 盐湖研究, 2019, 27(3): 104-111.
|
|
Su T, Guo M, Liu Z, et al. Comprehensive review of global lithium resources[J]. Journal of Salt Lake Research, 2019, 27(3): 104-111.
|
5 |
杨卉芃, 柳林, 丁国峰. 全球锂矿资源现状及发展趋势[J]. 矿产保护与利用, 2019, 39(5): 26-40.
|
|
Yang H P, Liu L, Ding G F. Present situation and development trend of lithium resources in the world[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 26-40.
|
6 |
曹兆江, 高敏, 宁占玉, 等. 青海盐湖锂资源及提锂技术概述[J]. 化工设计通讯, 2019, 45(6): 190,207.
|
|
Cao Z J, Gao M, Ning Z Y, et al. Lithium resources and lithium extraction technology in Qinghai salt lake[J]. Chemical Engineering Design Communications, 2019, 45(6): 190,207.
|
7 |
陈念, 钟辉, 颜辉. 国内外卤水提锂工艺技术现状[J]. 盐业与化工, 2014, 43(3): 1-4.
|
|
Chen N, Zhong H, Yan H. Present situation of the process and technique of lithium recovery from brine around the world[J]. Journal of Salt and Chemical Industry, 2014, 43(3): 1-4.
|
8 |
张绍成, 冉广芬. 吸附法盐湖卤水提锂工艺试验[J]. 盐湖研究, 1997, 5(1): 59-68.
|
|
Zhang S C, Ran G F. Technological experiment on lithium extraction from bittern of salt lake by adsorption method[J]. Journal of Salt Lake Research, 1997, 5(1): 59-68.
|
9 |
刘东帆, 孙淑英, 于建国. 盐湖卤水提锂技术研究与发展[J]. 化工学报, 2018, 69(1): 141-155.
|
|
Liu D F, Sun S Y, Yu J G. Research and development on technique of lithium recovery from salt lake brine[J]. CIESC Journal, 2018, 69(1): 141-155.
|
10 |
孙淑英, 张钦辉, 于建国. 尖晶石型LiMn2O4的水热合成及其锂吸附性能[J]. 过程工程学报, 2010, 10(1): 185-189.
|
|
Sun S Y, Zhang Q H, Yu J G. Hydrothermal synthesis and lithium adsorption properties of LiMn2O4 spinel[J]. The Chinese Journal of Process Engineering, 2010, 10(1): 185-189.
|
11 |
席晓丽, 王凯丰, 马立文, 等. 一种尖晶石型锂离子筛的制备方法: 106622116A[P]. 2017-05-10.
|
|
Xi X L, Wang K F, Ma L W. A method for preparing spinel lithium ion sieve: 106622116A[P]. 2017-05-10.
|
12 |
闫树旺, 钟辉, 周永兴. 二氧化钛吸附剂的研制及从卤水中提锂[J]. 离子交换与吸附, 1992, 8(3): 222-228.
|
|
Yan S W, Zhong H, Zhou Y X. Study on ionic seive of titanium oxide and lithium recovery from brines[J]. Ion Exchange and Adsorption, 1992, 8(3): 222-228.
|
13 |
董殿权, 张凤宝, 张国亮, 等. Li4Ti5O12的合成及对Li+的离子交换动力学[J]. 物理化学学报, 2007, 23(6): 950-954.
|
|
Dong D Q, Zhang F B, Zhang G L, et al. Synthesis of Li4Ti5O12 and its exchange kinetics with Li+[J]. Acta Physico-Chimica Sinica, 2007, 23(6): 950-954.
|
14 |
Isupov V P, Kotsupalo N P, Nemudry A P, et al. Aluminium hydroxide as selective sorbent of lithium salts from brines and technical solutions[J]. Studies in Surface Science and Catalysis, 1999, 120: 621-652.
|
15 |
吴志坚, 郭敏, 李权, 等. 氢氧化铝基锂吸附剂从卤水中吸附锂的机理[J]. 盐湖研究, 2018, 26(3): 1-6.
|
|
Wu Z J, Guo M, Li Q, et al. Adsorption mechanisms for the recovery of lithium from brines using aluminum hydroxide based adsorbent[J]. Journal of Salt Lake Research, 2018, 26(3): 1-6.
|
16 |
张绍成, 马培华, 邓小川. 吸附法从盐湖卤水中提取锂的方法: 1511964A[P]. 2004-07-14.
|
|
Zhang S C, Ma P H, Deng X C. Methods for lithium recovery from salt lake brine: 1511964A[P]. 2004-07-14.
|
17 |
李杰. 铝盐锂吸附剂制备工艺及吸附性能研究[D]. 成都: 成都理工大学, 2011.
|
|
Li J. Studies on the synthesis of aluminum salt lithium-adsorbent and its adsorptive property[D]. Chengdu: ChengduUniversity of Technology, 2011.
|
18 |
Qu J, He X M, Wang B T, et al. Synthesis of Li-Al layered double hydroxides via a mechanochemical route[J]. Applied Clay Science, 2016, 120: 24-27.
|
19 |
Fogg A M, Freij A J, Parkinson G M. Synthesis and anion exchange chemistry of rhombohedral Li/Al layered double hydroxides[J]. Chemistry of Materials, 2002, 14(1): 232-234.
|
20 |
郭敏, 刘忠, 李权, 等. 铝基锂吸附剂从卤水中吸附提锂的研究及进展[J]. 青海科技, 2019, 26(3): 16-20.
|
|
Guo M, Liu Z, Li Q, et al. Research and development of aluminum-based lithium adsorbent for lithium recovery from brine [J]. Qinghai Science and Technology, 2019, 26(3): 16-20.
|
21 |
Bauman W C, Burba Iii J L. Composition for the recovery of lithium values from brine and process of making/using said composition: US6280693[P]. 2001-08-28.
|
22 |
Lee J M, Bauman W C. Recovery of lithium from brines: US4116856(A)[P]. 1978-09-26.
|
23 |
Lee J M, Bauman W C. Recovery of lithium from brines: US4221767(A)[P]. 1982-08-31.
|
24 |
Lee J M, Bauman W C. Alumina compounds in ion exchange resins: US4381349[P]. 1983-04-26.
|
25 |
Kotsupalo N P, Ryabtsev A D, Poroshina I A, et al. Effect of structure on the sorption properties of chlorine-containing form of double aluminum lithium hydroxide[J]. Russian Journal of Applied Chemistry, 2013, 86(4): 482-487.
|
26 |
张升书, 李法强, 祝增虎, 等. Ca(ALG)2-LiCl·2Al(OH)3·nH2O的合成研究[J]. 洛阳理工学院学报(自然科学版), 2016, 26(2): 6-9.
|
|
Zhang S S, Li F Q, Zhu Z H, et al. Study on synthesis of Ca(ALG)2-LiCl·2Al(OH)3·nH2O[J]. Journal of Luoyang Institute of Science and Technology (Natural Science Edition), 2016, 26(2): 6-9.
|
27 |
陈程, 李亦然, 孙占学, 等. 磁性铝盐吸附剂的制备及高镁锂比盐湖卤水中提锂性能研究[J]. 有色金属(冶炼部分), 2018, (1): 29-33.
|
|
Chen C, Li Y R, Sun Z X, et al. Preparation of magnetic aluminum salt adsorbent and extraction performance of lithium from saline lake brine with high magnesium lithium ratio[J]. Nonferrous Metals (Extractive Metallurgy), 2018, (1): 29-33.
|
28 |
Chen J, Lin S, Yu J G. Quantitative effects of Fe3O4 nanoparticle content on Li+ adsorption and magnetic recovery performances of magnetic lithium-aluminum layered double hydroxides in ultrahigh Mg/Li ratio brines[J]. Journal of Hazardous Materials, 2020, 388: 122101.
|
29 |
寇晓康, 王刚, 刘金华. 一种吸附法从盐湖卤水中提取锂的方法: 101928828A[P]. 2010-12-29.
|
|
Kou X K, Wang G, Liu J H. Method for extracting lithium from salt lake brine by adsorption method: 101928828A[P]. 2010-12-29.
|
30 |
Hu F P, Lin S, Li P, et al. Quantitative effects of desorption intensity on structural stability and readsorption performance of lithium/aluminum layered double hydroxides in cyclic Li+ extraction from brines with ultrahigh Mg/Li ratio[J]. Industrial & Engineering Chemistry Research, 2020, 59(30): 13539-13548.
|