化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3880-3889.DOI: 10.11949/0438-1157.20201836
• 材料化学工程与纳米技术 • 上一篇
收稿日期:
2020-12-16
修回日期:
2021-03-23
出版日期:
2021-07-05
发布日期:
2021-07-05
通讯作者:
叶李艺
作者简介:
赖英萍(1995—),女,硕士研究生,LAI Yingping(),CHEN Ying,ZHAO Jiajia,TU Song,YE Liyi()
Received:
2020-12-16
Revised:
2021-03-23
Online:
2021-07-05
Published:
2021-07-05
Contact:
YE Liyi
摘要:
利用多元醇溶剂催化液化技术将椰衣直接液化得到生物基多元醇,用于制备聚氨酯缓冲包装泡沫材料。首先分析液化条件对液化过程及液化产物的影响,确定了较优的液化反应条件为:2%浓硫酸催化剂,液固比 6∶1(液化试剂与椰衣质量比),160℃ 常压反应80 min。然后将此条件下获得的液化产物(BP)替代部分石油基多元醇,制得聚氨酯泡沫(BPUF),通过力学性能测试、热重、扫描电镜、红外光谱等分析方法,研究BP含量对BPUF的影响。结果显示,35%BP替代量下获得的泡沫材料综合性能较好,泡孔平均直径为427 μm,密度为20.3 kg/m3,压缩强度为40.2 kPa,压缩模量为766 kPa,最小缓冲系数为2.27。通过本文获得综合性能较佳的聚氨酯缓冲包装泡沫材料,为椰衣资源综合利用提供新方法。
中图分类号:
赖英萍, 陈应, 赵佳佳, 吐松, 叶李艺. 椰衣基聚氨酯包装缓冲泡沫的制备与性能研究[J]. 化工学报, 2021, 72(7): 3880-3889.
LAI Yingping, CHEN Ying, ZHAO Jiajia, TU Song, YE Liyi. Preparation and performance of coconut fiber based polyurethane packaging cushioning foam[J]. CIESC Journal, 2021, 72(7): 3880-3889.
泡沫试样 | BP/% | 多元醇A/% | 多元醇B/% | A33/% | T-9/% | L-580/% | 去离子水/% | I① |
---|---|---|---|---|---|---|---|---|
PUF | 0 | 50.0 | 50.0 | 1.0 | 0.9 | 0.6 | 5.0 | 1.1 |
15%BPUF | 15 | 42.5 | 42.5 | 1.0 | 0.9 | 0.6 | 5.0 | 1.1 |
25%BPUF | 25 | 37.5 | 37.5 | 1.0 | 0.9 | 0.6 | 5.0 | 1.1 |
35%BPUF | 35 | 32.5 | 32.5 | 1.0 | 0.9 | 0.6 | 5.0 | 1.1 |
45%BPUF | 45 | 27.5 | 27.5 | 1.0 | 0.9 | 0.6 | 5.0 | 1.1 |
65%BPUF | 65 | 17.5 | 17.5 | 1.0 | 0.9 | 0.6 | 5.0 | 1.1 |
表1 BPUF的合成配方
Table 1 Synthetic formula of BPUF
泡沫试样 | BP/% | 多元醇A/% | 多元醇B/% | A33/% | T-9/% | L-580/% | 去离子水/% | I① |
---|---|---|---|---|---|---|---|---|
PUF | 0 | 50.0 | 50.0 | 1.0 | 0.9 | 0.6 | 5.0 | 1.1 |
15%BPUF | 15 | 42.5 | 42.5 | 1.0 | 0.9 | 0.6 | 5.0 | 1.1 |
25%BPUF | 25 | 37.5 | 37.5 | 1.0 | 0.9 | 0.6 | 5.0 | 1.1 |
35%BPUF | 35 | 32.5 | 32.5 | 1.0 | 0.9 | 0.6 | 5.0 | 1.1 |
45%BPUF | 45 | 27.5 | 27.5 | 1.0 | 0.9 | 0.6 | 5.0 | 1.1 |
65%BPUF | 65 | 17.5 | 17.5 | 1.0 | 0.9 | 0.6 | 5.0 | 1.1 |
催化剂用量/% | 黏度/ (mPa·s) | 羟值/ (mg/g) | 酸值/ (mg/g) | 残渣率/ % |
---|---|---|---|---|
1 | 312 | 319.6 | 6.7 | 11.8 |
2 | 375 | 336.2 | 19.0 | 6.8 |
3 | 365 | 320.7 | 27.7 | 5.8 |
4 | 364 | 316.9 | 28.8 | 7.1 |
5 | 658 | 299.5 | 33.7 | 6.5 |
表2 浓硫酸催化剂用量对液化过程及BP的影响
Table 2 The influence of H2SO4 catalyst content on BP and the liquefaction process
催化剂用量/% | 黏度/ (mPa·s) | 羟值/ (mg/g) | 酸值/ (mg/g) | 残渣率/ % |
---|---|---|---|---|
1 | 312 | 319.6 | 6.7 | 11.8 |
2 | 375 | 336.2 | 19.0 | 6.8 |
3 | 365 | 320.7 | 27.7 | 5.8 |
4 | 364 | 316.9 | 28.8 | 7.1 |
5 | 658 | 299.5 | 33.7 | 6.5 |
液化温度/ ℃ | 黏度/ (mPa·s) | 羟值/ (mg/g) | 酸值/ (mg/g) | 残渣率/ % |
---|---|---|---|---|
130 | 738 | 397.3 | 13.8 | 40. 4 |
140 | 713 | 436.2 | 16.2 | 13.6 |
150 | 410 | 380.2 | 17.9 | 8.8 |
160 | 375 | 336.2 | 19.0 | 6.8 |
170 | 442 | 331.4 | 20.5 | 7.5 |
180 | 697 | 253.1 | 19.3 | 20.3 |
表3 液化温度对液化过程及BP的影响
Table 3 The influence of liquefaction temperature on BP and the liquefaction process
液化温度/ ℃ | 黏度/ (mPa·s) | 羟值/ (mg/g) | 酸值/ (mg/g) | 残渣率/ % |
---|---|---|---|---|
130 | 738 | 397.3 | 13.8 | 40. 4 |
140 | 713 | 436.2 | 16.2 | 13.6 |
150 | 410 | 380.2 | 17.9 | 8.8 |
160 | 375 | 336.2 | 19.0 | 6.8 |
170 | 442 | 331.4 | 20.5 | 7.5 |
180 | 697 | 253.1 | 19.3 | 20.3 |
m(l)∶m(s) | 黏度/ (mPa·s) | 羟值/ (mg/g) | 酸值/ (mg/g) | 残渣率/ % |
---|---|---|---|---|
3∶1 | 801 | 300.9 | 18.2 | 24.3 |
4∶1 | 509 | 333.9 | 20.1 | 13.6 |
5∶1 | 375 | 336.2 | 19.0 | 6.8 |
6∶1 | 360 | 345.9 | 18.2 | 6.5 |
7∶1 | 321 | 347.3 | 17.5 | 5.8 |
表4 液固比对液化过程及BP的影响
Table 4 The influence of liquid-solid ratio on BP and the liquefaction process
m(l)∶m(s) | 黏度/ (mPa·s) | 羟值/ (mg/g) | 酸值/ (mg/g) | 残渣率/ % |
---|---|---|---|---|
3∶1 | 801 | 300.9 | 18.2 | 24.3 |
4∶1 | 509 | 333.9 | 20.1 | 13.6 |
5∶1 | 375 | 336.2 | 19.0 | 6.8 |
6∶1 | 360 | 345.9 | 18.2 | 6.5 |
7∶1 | 321 | 347.3 | 17.5 | 5.8 |
液化时间/ min | 黏度/ (mPa·s) | 羟值/ (mg/g) | 酸值/ (mg/g) | 残渣率/ % |
---|---|---|---|---|
20 | 516 | 399.6 | 13.6 | 18.1 |
30 | 508 | 393.5 | 15.8 | 11.2 |
40 | 461 | 386.8 | 16.1 | 9.7 |
60 | 387 | 379.6 | 16.5 | 7.2 |
80 | 360 | 345.9 | 18.2 | 6.5 |
100 | 350 | 336.3 | 19.5 | 5.6 |
表5 液化时间对液化过程及BP的影响
Table 5 The influence of liquefaction time on BP and the liquefaction process
液化时间/ min | 黏度/ (mPa·s) | 羟值/ (mg/g) | 酸值/ (mg/g) | 残渣率/ % |
---|---|---|---|---|
20 | 516 | 399.6 | 13.6 | 18.1 |
30 | 508 | 393.5 | 15.8 | 11.2 |
40 | 461 | 386.8 | 16.1 | 9.7 |
60 | 387 | 379.6 | 16.5 | 7.2 |
80 | 360 | 345.9 | 18.2 | 6.5 |
100 | 350 | 336.3 | 19.5 | 5.6 |
试样 | C/ %(质量) | H/ %(质量) | N/ %(质量) | S/ %(质量) | O/ %(质量) |
---|---|---|---|---|---|
CF | 45.78 | 5.89 | 0.12 | 0.21 | 48.00 |
CFR | 47.39 | 4.69 | 0.11 | 0.79 | 47.02 |
BP | 47.18 | 9.08 | — | 0.37 | 43.37 |
表6 CF、CFR和BP的元素分析
Table 6 Elemental analysis of CF,CFR and BP
试样 | C/ %(质量) | H/ %(质量) | N/ %(质量) | S/ %(质量) | O/ %(质量) |
---|---|---|---|---|---|
CF | 45.78 | 5.89 | 0.12 | 0.21 | 48.00 |
CFR | 47.39 | 4.69 | 0.11 | 0.79 | 47.02 |
BP | 47.18 | 9.08 | — | 0.37 | 43.37 |
试样 | 组合A料黏度/ (mPa·s) | 密度/ (kg/m3) | 压缩强度/ kPa | 压缩模量/ kPa | Cmin | kPa |
---|---|---|---|---|---|---|
PUF | 346 | 25.8 | 50.8 | 1008 | 3.05 | 143.7 |
15%BPUF | 421 | 22.3 | 45.8 | 723 | 2.77 | 125.5 |
25%BPUF | 417 | 21.2 | 41.0 | 621 | 1.91 | 44.3 |
35%BPUF | 414 | 19.8 | 36.5 | 633 | 2.39 | 59.5 |
45%BPUF | 410 | 23.6 | 24.8 | 452 | 2.14 | 39.2 |
65%BPUF | 380 | 28.9 | 19.7 | 333 | 2.75 | 85.5 |
表7 BP替代量对发泡组合A料黏度和BPUF性能的影响
Table 7 The influence of BP content on the viscosity of foaming composition A and properties of BPUF
试样 | 组合A料黏度/ (mPa·s) | 密度/ (kg/m3) | 压缩强度/ kPa | 压缩模量/ kPa | Cmin | kPa |
---|---|---|---|---|---|---|
PUF | 346 | 25.8 | 50.8 | 1008 | 3.05 | 143.7 |
15%BPUF | 421 | 22.3 | 45.8 | 723 | 2.77 | 125.5 |
25%BPUF | 417 | 21.2 | 41.0 | 621 | 1.91 | 44.3 |
35%BPUF | 414 | 19.8 | 36.5 | 633 | 2.39 | 59.5 |
45%BPUF | 410 | 23.6 | 24.8 | 452 | 2.14 | 39.2 |
65%BPUF | 380 | 28.9 | 19.7 | 333 | 2.75 | 85.5 |
1 | 杨荣, 乔红, 胡文田, 等. 反应型磷氮阻燃剂/可膨胀石墨复配阻燃聚氨酯泡沫[J]. 化工学报, 2016, 67(5): 2169-2175. |
Yang R, Qiao H, Hu W T, et al. Synthesis, physical-mechanical properties and fire behaviors of polyurethane foam with reactive flame retardant and expandable graphite[J]. CIESC Journal, 2016, 67(5): 2169-2175. | |
2 | Carriço C S, Fraga T, Carvalho V E, et al. Polyurethane foams for thermal insulation uses produced from castor oil and crude glycerol biopolyols[J]. Molecules (Basel, Switzerland), 2017, 22(7): E1091. |
3 | 李梦迪, 王波, 王哲慧, 等. 基于环三磷腈磷氮阻燃剂的合成及其在聚氨酯泡沫的应用[J]. 化工学报, 2020, 71(4): 1871-1880. |
Li M D, Wang B, Wang Z H, et al. Synthesis of phosphorus-nitrogen flame retardant based on cyclophosphonate and its application on rigid polyurethane foam[J]. CIESC Journal, 2020, 71(4): 1871-1880. | |
4 | Pan H. Synthesis of polymers from organic solvent liquefied biomass: a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(7): 3454-3463. |
5 | Gu R J, Konar S, Sain M. Preparation and characterization of sustainable polyurethane foams from soybean oils[J]. Journal of the American Oil Chemists' Society, 2012, 89(11): 2103-2111. |
6 | Amran U A, Zakaria S, Chia C H, et al. Polyols and rigid polyurethane foams derived from liquefied lignocellulosic and cellulosic biomass[J]. Cellulose, 2019, 26(5): 3231-3246. |
7 | 陈旭亮, 任强, 宋艳, 等. 基于醇胺固定-释放二氧化碳原理的聚氨酯泡沫绿色制备[J]. 化工学报, 2017, 68(11): 4383-4389. |
Chen X L, Ren Q, Song Y, et al. Ammonium carbamate from diethanolamine for green foaming of polyurethanes with carbon dioxide[J]. CIESC Journal, 2017, 68(11): 4383-4389. | |
8 | Gama N V, Ferreira A, Barros-Timmons A. Polyurethane foams: past, present, and future[J]. Materials (Basel, Switzerland), 2018, 11(10): E1841. |
9 | Furtwengler P, Avérous L. Renewable polyols for advanced polyurethane foams from diverse biomass resources[J]. Polymer Chemistry, 2018, 9(32): 4258-4287. |
10 | 郭海军, 张海荣, 丁帅, 等. 木质纤维素多元醇液化及液化产物提质的研究进展[J]. 化工学报, 2021, 72(6): 3228-3238. |
Guo H J, Zhang H R, Ding S, et al. Research progress on lignocellulose liquefaction in polyhydric alcohol and upgrading of liquefaction product[J]. CIESC Journal, 2021, 72(6): 3228-3238. | |
11 | D'Souza J, George B, Camargo R, et al. Synthesis and characterization of bio-polyols through the oxypropylation of bark and alkaline extracts of bark[J]. Industrial Crops and Products, 2015, 76: 1-11. |
12 | Fernandes S, Freire C S R, Neto C P, et al. The bulk oxypropylation of chitin and chitosan and the characterization of the ensuing polyols[J]. Green Chemistry, 2008, 10(1): 93-97. |
13 | de Menezes A J, Pasquini D, Curvelo A A S, et al. Novel thermoplastic materials based on the outer-shell oxypropylation of corn starch granules[J]. Biomacromolecules, 2007, 8(7): 2047-2050. |
14 | Serrano L, Alriols M G, Briones R, et al. Oxypropylation of rapeseed cake residue generated in the biodiesel production process[J]. Industrial & Engineering Chemistry Research, 2010, 49(4): 1526-1529. |
15 | Li Y, Ragauskas A J. Kraft lignin-based rigid polyurethane foam[J]. Journal of Wood Chemistry and Technology, 2012, 32(3): 210-224. |
16 | Abdel Hakim A A, Nassar M, Emam A, et al. Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol[J]. Materials Chemistry and Physics, 2011, 129(1/2): 301-307. |
17 | Chen Q L, Li R Y, Sun K W, et al. Preparation of bio-degradable polyurethane foams from liquefied wheat straw[J]. Advanced Materials Research, 2011, 217/218: 1239-1244. |
18 | Yue D Z, Oribayo O, Rempel G L, et al. Liquefaction of waste pine wood and its application in the synthesis of a flame retardant polyurethane foam[J]. RSC Advances, 2017, 7(48): 30334-30344. |
19 | Gama N, Silva R, Carvalho A P O, et al. Sound absorption properties of polyurethane foams derived from crude glycerol and liquefied coffee grounds polyol[J]. Polymer Testing, 2017, 62: 13-22. |
20 | 王政, 黄广民, 赵斌, 等. 椰衣半纤维素的提取及其结构表征[J]. 食品科学, 2017, 38(14): 245-249. |
Wang Z, Huang G M, Zhao B, et al. Extraction and structural characterization of hemicellulose from coconut coir fiber[J]. Food Science, 2017, 38(14): 245-249. | |
21 | 岳大然. 椰衣纤维资源化利用现状及其发展前景[J]. 包装工程, 2020, 41(23): 37-43. |
Yue D R. Current situation and development prospects of the resource utilization of coir fiber[J]. Packaging Engineering, 2020, 41(23): 37-43. | |
22 | Lee Y, Lee E Y. Thermochemical conversion of red pine wood, Pinus densiflora to biopolyol using biobutanediol-mediated solvolysis for biopolyurethane preparation[J]. Wood Science and Technology, 2018, 52(2): 581-596. |
23 | Demirbaş A. Mechanisms of liquefaction and pyrolysis reactions of biomass[J]. Energy Conversion and Management, 2000, 41(6): 633-646. |
24 | Hu S J, Li Y B. Two-step sequential liquefaction of lignocellulosic biomass by crude glycerol for the production of polyols and polyurethane foams[J]. Bioresource Technology, 2014, 161: 410-415. |
25 | Lee S H, Yoshioka M, Shiraishi N. Liquefaction of corn bran (CB) in the presence of alcohols and preparation of polyurethane foam from its liquefied polyol[J]. Journal of Applied Polymer Science, 2000, 78(2): 319-325. |
26 | 闫晓霖, 王克冰. 甜菜粕液化降解制备多元醇的工艺条件[J]. 化工进展, 2011, 30(7): 1623-1626. |
Yan X L, Wang K B. Processing conditions for preparation of polyol from beet pulp liquefied degradation[J]. Chemical Industry and Engineering Progress, 2011, 30(7): 1623-1626. | |
27 | Hu S J, Wan C X, Li Y B. Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw[J]. Bioresource Technology, 2012, 103(1): 227-233. |
28 | Zhang H R, Yang H J, Guo H J, et al. Kinetic study on the liquefaction of wood and its three cell wall component in polyhydric alcohols[J]. Applied Energy, 2014, 113: 1596-1600. |
29 | Ye L Y, Zhang J M, Zhao J, et al. Liquefaction of bamboo shoot shell for the production of polyols[J]. Bioresource Technology, 2014, 153: 147-153. |
30 | Shao Q, Li H Q, Huang C P, et al. Biopolyol preparation from liquefaction of grape seeds[J]. Journal of Applied Polymer Science, 2016, 133(34): 43835. |
31 | Liu L, Sun J S, Li M, et al. Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment[J]. Bioresource Technology, 2009, 100(23): 5853-5858. |
32 | Kosmela P, Hejna A, Formela K, et al. Biopolyols obtained via crude glycerol-based liquefaction of cellulose: their structural, rheological and thermal characterization[J]. Cellulose, 2016, 23(5): 2929-2942. |
33 | Huang X Y, De Hoop C F, Xie J L, et al. High bio-content polyurethane (PU) foam made from bio-polyol and cellulose nanocrystals (CNCs) via microwave liquefaction[J]. Materials & Design, 2018, 138: 11-20. |
34 | Gama N V, Soares B, Freire C S R, et al. Bio-based polyurethane foams toward applications beyond thermal insulation[J]. Materials & Design, 2015, 76: 77-85. |
35 | Mohammadpour R, Mir Mohamad Sadeghi G. Effect of liquefied lignin content on synthesis of bio-based polyurethane foam for oil adsorption application[J]. Journal of Polymers and the Environment, 2020, 28(3): 892-905. |
36 | Li S F, Jiang Z, Yuan K J, et al. Studies on the thermal behavior of polyurethanes[J]. Polymer-Plastics Technology and Engineering, 2006, 45(1): 95-108. |
37 | Reinerte S, Kirpluks M, Cabulis U. Thermal degradation of highly crosslinked rigid PU-PIR foams based on high functionality tall oil polyol[J]. Polymer Degradation and Stability, 2019, 167: 50-57. |
38 | 罗瑜莹, 肖生苓, 李琛, 等. 纤维多孔缓冲包装材料泡孔参数与其力学性能的关系[J]. 林业科学, 2017, 53(5): 116-124. |
Luo Y Y, Xiao S L, Li C, et al. Relationships between bubble parameters and mechanical properties of fiber porous cushioning packaging material[J]. Scientia Silvae Sinicae, 2017, 53(5): 116-124. |
[1] | 王帅, 杨富凯, 徐新宇. 阻燃型全生物基多元醇聚氨酯泡沫的制备及性能研究[J]. 化工学报, 2023, 74(3): 1399-1408. |
[2] | 李梦迪, 王波, 王哲慧, 张晔, 杨荣, 李锦春. 基于环三磷腈磷氮阻燃剂的合成及其在聚氨酯泡沫的应用[J]. 化工学报, 2020, 71(4): 1871-1880. |
[3] | 张涛, 刘琪英, 张彩红, 张琦, 马隆龙. Ni/La2O2CO3催化剂对山梨醇氢解产物的选择性调控[J]. 化工学报, 2017, 68(6): 2359-2367. |
[4] | 胡文田, 杨荣, 许亮, 宋艳, 李锦春. 基于环三磷腈/磷酸酯反应型磷-氮阻燃剂的合成、热降解及应用[J]. 化工学报, 2015, 66(5): 1976-1982. |
[5] | 王小伍, 黄玮. 多元醇二元体系纤维复合相变材料的传热性能[J]. 化工学报, 2013, 64(8): 2839-2845. |
[6] | 俞豪杰, 李晓晓, 王立. 在NiCl2、MnCl2或FeCl3存在下用多元醇法高浓度合成银纳米线[J]. 化工学报, 2013, 64(2): 749-755. |
[7] | 邓 理1,廖 兵1,郭庆祥. 纤维素选择性催化转化为重要平台化合物的研究进展[J]. 化工进展, 2013, 32(02): 245-254. |
[8] | 樊明德1,2,袁 鹏3,何宏平3,陈天虎4,朱建喜3,刘 冬3,郝 娇1. 化学液相还原法制备零价铁纳米颗粒研究进展及展望[J]. 化工进展, 2012, 31(07): 1542-1548. |
[9] | 吕 微,蒋剑春,徐俊明,李 静. 小桐子油脂肪酸聚酯多元醇及聚氨酯泡沫的制备和性能[J]. 化工进展, 2012, 31(06): 1280-1284. |
[10] | 江 涛,陈诗诗,曹发海. 生物质多元醇水相重整制氢研究进展[J]. 化工进展, 2012, 31(05): 1010-1017. |
[11] | 汪广恒,杨水兰,牛红梅,刘国阳. 环境友好型阻燃高回弹聚氨酯软泡性能[J]. 化工进展, 2012, 31(05): 1076-1081. |
[12] | 闫晓霖,王克冰. 甜菜粕液化降解制备多元醇的工艺条件 [J]. CIESC Journal, 2011, 30(7): 1623-. |
[13] | 鲍妮娜,吴洪发,王晶仪,薛冬桦. 生物基化工醇重组分中多元醇的分离提取 [J]. CIESC Journal, 2011, 30(5): 957-. |
[14] | 杨 柳1,马卫华1,戚 莉2,钟 秦1. 膜分离法精制低不饱和度聚醚多元醇[J]. CIESC Journal, 2011, 30(12): 2606-. |
[15] | 付长安1,郭建维1,刘卅2,崔英德1,杨楚芬1,彭进平1,崔亦华1. 金刚烷直接氧化制备金刚烷多元醇新工艺[J]. CIESC Journal, 2011, 62(12): 3428-3433. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||