化工学报 ›› 2022, Vol. 73 ›› Issue (10): 4734-4744.DOI: 10.11949/0438-1157.20220579
收稿日期:
2022-04-24
修回日期:
2022-08-02
出版日期:
2022-10-05
发布日期:
2022-11-02
通讯作者:
刘育红
作者简介:
徐力(1997—),男,硕士研究生,18710555930@163.com
基金资助:
Li XU(), Qianqiu WU, Zixuan LEI, Jiaxuan LI, Yuhong LIU()
Received:
2022-04-24
Revised:
2022-08-02
Online:
2022-10-05
Published:
2022-11-02
Contact:
Yuhong LIU
摘要:
通过不同预聚程度的环氧化硅氧烷(ES)与酚醛树脂共固化及固化物理状态的调控,构建不同拓扑结构的交联网络,探讨了不同预聚程度的硅氧烷预聚体(PES)改性热塑性酚醛树脂(NR-PES)交联网络的调控及其强韧化的构建方法。首先,合成了一种不同预聚程度的环氧化硅氧烷(PES),通过DSC和流变分析,明确了NR-PES的固化反应和物理状态特征,在此基础上,确定了不同交联结构NR-PES的制备方法。接着,采用DMA、TGA、力学测试研究了PES的预聚程度对NR-PES交联网络和性能的影响规律。结果表明,当PES预聚程度较低时,NR-PES的交联密度较低,导致其热稳定性和弯曲强度较低;随着PES预聚程度的增加,NR-PES的交联密度不断增加,其热稳定性、弯曲强度随之增加,但KIC不断降低。特别是,PES的预聚程度为30%时,2-NR-PES展现出优异的热稳定性、弯曲强度和断裂韧性,残炭率C800℃为53.43%,弯曲强度为20.51 MPa,KIC为0.389 MPa·m1/2。此外,当PES预聚程度过高时,NR-PES的热稳定性、弯曲强度和断裂韧性显著降低。
中图分类号:
徐力, 吴谦秋, 雷子萱, 李嘉玄, 刘育红. 硅氧烷预聚体改性热塑性酚醛树脂的交联结构及其力学性能[J]. 化工学报, 2022, 73(10): 4734-4744.
Li XU, Qianqiu WU, Zixuan LEI, Jiaxuan LI, Yuhong LIU. Crosslinking structure and mechanical properties of thermoplastic phenolic resin modified with siloxane prepolymer[J]. CIESC Journal, 2022, 73(10): 4734-4744.
氢原子编号 | 化学位移δ | 积分比 | 结构式 |
---|---|---|---|
a | 2.90~3.03 | 1.00 | 4H, —CH— |
b | 1.80~1.94 | 0.97 | 4H, —CH2— |
e | 1.51~1.59 | 0.48 | 2H, —CH— |
f | 0.98~1.08 | 1.02 | 4H, —CH2— |
g | 0.37~0.46 | 0.95 | 4H, —CH2— |
h | 0~0.05 | 2.95 | 12H,—CH3— |
表1 ES的1H NMR谱图分析
Table 1 1H NMR spectrum analysis of ES
氢原子编号 | 化学位移δ | 积分比 | 结构式 |
---|---|---|---|
a | 2.90~3.03 | 1.00 | 4H, —CH— |
b | 1.80~1.94 | 0.97 | 4H, —CH2— |
e | 1.51~1.59 | 0.48 | 2H, —CH— |
f | 0.98~1.08 | 1.02 | 4H, —CH2— |
g | 0.37~0.46 | 0.95 | 4H, —CH2— |
h | 0~0.05 | 2.95 | 12H,—CH3— |
名称 | 升温速率/(℃·min-1) | Ti/℃ | Tp/℃ | Tf/℃ | ΔT/℃ | ΔH/(J·g-1) | ΔH平均值/(J·g-1) |
---|---|---|---|---|---|---|---|
NH | 5 | 121.0 | 134.1 | 150.2 | 29.2 | 85.88 | 84.32 |
10 | 129.8 | 142.6 | 158.7 | 28.9 | 84.02 | ||
15 | 137.4 | 148.7 | 164.1 | 26.7 | 84.92 | ||
20 | 141.5 | 152.9 | 167.5 | 26.0 | 82.46 | ||
1-NR-PES | 5 | 44.6 | 122.6 | 199.6 | 155.0 | 245.31 | 220.33 |
10 | 53.4 | 129.9 | 201.0 | 156.6 | 240.73 | ||
15 | 64.2 | 133.7 | 213.7 | 149.5 | 213.63 | ||
20 | 80.2 | 139.7 | 222.3 | 142.1 | 181.64 | ||
2-NR-PES | 5 | 63.4 | 126.9 | 208.0 | 144.6 | 130.22 | 134.14 |
10 | 66.3 | 133.7 | 228.6 | 162.3 | 126.65 | ||
15 | 70.0 | 140.2 | 232.2 | 162.2 | 127.09 | ||
20 | 116.0 | 144.8 | 243.1 | 127.1 | 152.59 |
表2 非等温DSC下的NH、1-NR-PES和2-NR-PES的固化特征参数
Table 2 Curing characteristic parameters of NH, 1-NR-PES and 2-NR-PES under non-isothermal DSC
名称 | 升温速率/(℃·min-1) | Ti/℃ | Tp/℃ | Tf/℃ | ΔT/℃ | ΔH/(J·g-1) | ΔH平均值/(J·g-1) |
---|---|---|---|---|---|---|---|
NH | 5 | 121.0 | 134.1 | 150.2 | 29.2 | 85.88 | 84.32 |
10 | 129.8 | 142.6 | 158.7 | 28.9 | 84.02 | ||
15 | 137.4 | 148.7 | 164.1 | 26.7 | 84.92 | ||
20 | 141.5 | 152.9 | 167.5 | 26.0 | 82.46 | ||
1-NR-PES | 5 | 44.6 | 122.6 | 199.6 | 155.0 | 245.31 | 220.33 |
10 | 53.4 | 129.9 | 201.0 | 156.6 | 240.73 | ||
15 | 64.2 | 133.7 | 213.7 | 149.5 | 213.63 | ||
20 | 80.2 | 139.7 | 222.3 | 142.1 | 181.64 | ||
2-NR-PES | 5 | 63.4 | 126.9 | 208.0 | 144.6 | 130.22 | 134.14 |
10 | 66.3 | 133.7 | 228.6 | 162.3 | 126.65 | ||
15 | 70.0 | 140.2 | 232.2 | 162.2 | 127.09 | ||
20 | 116.0 | 144.8 | 243.1 | 127.1 | 152.59 |
组别 | E′ (40℃)/ GPa | Tg1/℃ | Tg2/℃ | E′ (Tg2 +40℃) /MPa | Ve×103/(mol·m-3) | 半峰宽 |
---|---|---|---|---|---|---|
NH | 8.52 | — | 135.4 | 71.5 | 7.02 | 28.95 |
1-NR-PES-0% | 10.08 | — | 129.16 | 34.3 | 3.11 | 40.15 |
1-NR-PES-30% | 12.92 | 80.33 | 126.97 | 31.2 | 2.87 | 39.80 |
1-NR-PES-60% | 15.70 | 64.88 | 125.04 | 32.9 | 3.01 | 43.05 |
1-NR-PES-90% | 15.42 | 60.33 | 124.23 | 35.2 | 3.23 | 43.18 |
2-NR-PES-0% | 10.93 | — | 121.13 | 34.7 | 3.20 | 62.84 |
2-NR-PES-30% | 10.89 | — | 122.02 | 43.9 | 4.05 | 59.89 |
2-NR-PES-60% | 12.66 | 94.68 | 130.22 | 48.4 | 4.38 | 52.24 |
2-NR-PES-90% | 12.70 | 97.16 | 135.24 | 46.9 | 4.18 | 58.27 |
表3 NR-PES的动态热-力学性能
Table 3 Dynamic thermo-mechanical properties of NR-PES
组别 | E′ (40℃)/ GPa | Tg1/℃ | Tg2/℃ | E′ (Tg2 +40℃) /MPa | Ve×103/(mol·m-3) | 半峰宽 |
---|---|---|---|---|---|---|
NH | 8.52 | — | 135.4 | 71.5 | 7.02 | 28.95 |
1-NR-PES-0% | 10.08 | — | 129.16 | 34.3 | 3.11 | 40.15 |
1-NR-PES-30% | 12.92 | 80.33 | 126.97 | 31.2 | 2.87 | 39.80 |
1-NR-PES-60% | 15.70 | 64.88 | 125.04 | 32.9 | 3.01 | 43.05 |
1-NR-PES-90% | 15.42 | 60.33 | 124.23 | 35.2 | 3.23 | 43.18 |
2-NR-PES-0% | 10.93 | — | 121.13 | 34.7 | 3.20 | 62.84 |
2-NR-PES-30% | 10.89 | — | 122.02 | 43.9 | 4.05 | 59.89 |
2-NR-PES-60% | 12.66 | 94.68 | 130.22 | 48.4 | 4.38 | 52.24 |
2-NR-PES-90% | 12.70 | 97.16 | 135.24 | 46.9 | 4.18 | 58.27 |
组别 | T5%/℃ | T10%/℃ | Td,max/℃ | Dmax/(%·℃-1) | C800℃ /% |
---|---|---|---|---|---|
NH | 288.9 | 325.9 | 349.0 | -0.2062 | 50.31 |
1-NR-PES-0% | 326.2 | 375.0 | 455.7 | -0.2312 | 50.49 |
1-NR-PES-30% | 324.8 | 372.6 | 452.5 | -0.2189 | 53.43 |
1-NR-PES-60% | 328.2 | 374.2 | 451.3 | -0.2311 | 51.83 |
1-NR-PES-90% | 322.3 | 372.3 | 453.5 | -0.2282 | 52.03 |
2-NR-PES-0% | 300.5 | 355.3 | 400.7 | -0.1313 | 53.64 |
2-NR-PES-30% | 323.0 | 368.5 | 439.2 | -0.1358 | 59.92 |
2-NR-PES-60% | 320.0 | 365.8 | 432.2 | -0.1416 | 58.93 |
2-NR-PES-90% | 326.3 | 370.5 | 439.7 | -0.1395 | 59.78 |
表4 不同预聚程度1-NR-PES在氮气气氛下的热重分析数据
Table 4 Thermogravimetric analysis data of 1-NR-PES with different degrees of prepolymerization under nitrogen atmosphere
组别 | T5%/℃ | T10%/℃ | Td,max/℃ | Dmax/(%·℃-1) | C800℃ /% |
---|---|---|---|---|---|
NH | 288.9 | 325.9 | 349.0 | -0.2062 | 50.31 |
1-NR-PES-0% | 326.2 | 375.0 | 455.7 | -0.2312 | 50.49 |
1-NR-PES-30% | 324.8 | 372.6 | 452.5 | -0.2189 | 53.43 |
1-NR-PES-60% | 328.2 | 374.2 | 451.3 | -0.2311 | 51.83 |
1-NR-PES-90% | 322.3 | 372.3 | 453.5 | -0.2282 | 52.03 |
2-NR-PES-0% | 300.5 | 355.3 | 400.7 | -0.1313 | 53.64 |
2-NR-PES-30% | 323.0 | 368.5 | 439.2 | -0.1358 | 59.92 |
2-NR-PES-60% | 320.0 | 365.8 | 432.2 | -0.1416 | 58.93 |
2-NR-PES-90% | 326.3 | 370.5 | 439.7 | -0.1395 | 59.78 |
1 | 许国娟, 贾晨辉, 田谋锋, 等. 酚醛树脂增韧改性研究进展及应用现状概述[J]. 复合材料科学与工程, 2021(9): 118-128. |
Xu G J, Jia C H, Tian M F, et al. Research progress and application of phenolic resin toughening modification[J]. Composites Science and Engineering, 2021(9): 118-128. | |
2 | Hirano K, Asami M. Phenolic resins-100 years of progress and their future[J]. Reactive and Functional Polymers, 2013, 73(2): 256-269. |
3 | Effendi A, Gerhauser H, Bridgwater A V. Production of renewable phenolic resins by thermochemical conversion of biomass: a review[J]. Renewable and Sustainable Energy Reviews, 2008, 12(8): 2092-2116. |
4 | Wu H D, Ma C, Lin J M. Processability and properties of phenoxy resin toughened phenolic resin composites[J]. Journal of Applied Polymer Science, 2015, 63(7): 911-917. |
5 | 黄发荣, 焦杨声. 酚醛树脂及其应用[M]. 北京: 化学工业出版社, 2003. |
Huang F R, Jiao Y S. Phenolic Resin and Its Application [M]. Beijing: Chemical Industry Press, 2003. | |
6 | 李永亮, 李颖, 邹文俊, 等. 酚醛树脂的增韧改性研究进展[J]. 河南化工, 2012(19): 23-27. |
Li Y L, Li Y, Zou W J, et al. Research progress of toughening modification of phenolic resin[J]. Henan Chemical Industry, 2012(19): 23-27. | |
7 | 刘成林, 周传健, 赵新新, 等. 有机硅改性酚醛树脂的研究进展[J]. 有机硅材料, 2014, 28(5): 395-402. |
Liu C L, Zhou C J, Zhao X X, et al. Research progress of modified phenolic resin by organic silicon[J]. Organic Silicon Materials, 2014, 28(5): 395-402. | |
8 | Wu H D, Ma C C M, Lee M S, et al. Pultruded fiber-reinforced polyurethane-toughened phenolic resin(part Ⅰ): Reactivity and morphology[J]. Applied Macromolecular Chemistry and Physics, 1996, 235(1): 35-45. |
9 | Kimura H, Matsumoto A, Ohtsuka K. Studies on new type of phenolic resin-curing reaction of bisphenol‐A‐based benzoxazine with epoxy resin using latent curing agent and the properties of the cured resin[J]. Journal of Applied Polymer Science, 2008, 109(2): 1248-1256. |
10 | 陈平, 张岩. 热固性树脂的增韧方法及其增韧机理[J]. 复合材料学报, 1999, 16(3): 19-22. |
Chen P, Zhang Y. Toughening method and toughening mechanism of thermosetting resin[J]. Journal of Composites, 1999, 16(3): 19-22. | |
11 | 杨彦峰, 何继敏. 酚醛树脂的增韧方法及增韧机理分析[J]. 塑料科技, 2013, 41(5): 108-113. |
Yang Y F, He J M. Analysis of toughening method and toughening mechanism of phenolic resin[J]. Plastic Science and Technology, 2013, 41(5): 108-113. | |
12 | 张小华, 徐伟箭. 无机纳米粒子在环氧树脂增韧改性中的应用[J]. 高分子通报, 2005(6): 100-104. |
Zhang X H, Xu W J. Application of inorganic nanoparticles in toughening of epoxy resin[J]. Polymer Bulletin, 2005(6): 100-104. | |
13 | Kaynak C, Cagatay O. Rubber toughening of phenolic resin by using nitrile rubber and amino silane[J]. Polymer Testing, 2006, 25(3): 296-305. |
14 | Zeng Y B, Zhang L Z, Peng W Z, et al. Microstructure, mechanical properties, and fracture behavior of liquid rubber toughened thermosets[J]. Journal of Applied Polymer Science, 1991, 42(7): 1905-1910. |
15 | 刘晓洪, 王玲, 胡银霞. 钼酚醛树脂/TiO2纳米复合材料的研究[J]. 工程塑料应用, 2003, 31(2): 5-7. |
Liu X H, Wang L, Hu Y X. Preparation and characterization of TiO2/molybdenum phenolic resin nanocomposites[J]. Application of Engineering Plastics, 2003, 31(2): 5-7. | |
16 | 徐新锋, 吴战鹏, 武德珍, 等. 端羧基丁腈橡胶改性酚醛树脂的性能研究[J]. 玻璃钢/复合材料, 2009(1): 47-50. |
Xu X F, Wu Z P, Wu D Z, et al. Study on the properties of phenolic resin modified by carboxyl nitrile butadiene rubber [J]. Fiber Reinforced Plastics/Composites, 2009(1): 47-50. | |
17 | Zheng Y, Li J, Yang L, et al. Synthesis and properties of nano carboxylic acrylonitrile butadiene rubber latex toughened phenolic resin[J]. Journal of Applied Polymer Science, 2012, 123(2): 1079-1084. |
18 | Dadfar M R, Ghadami F. Effect of rubber modification on fracture toughness properties of glass reinforced hot cured epoxy composites[J]. Materials and Design, 2013, 47: 16-20. |
19 | 孔雪松. 弹性体/无机纳米粒子复合体系增强增韧回收ABS树脂[J]. 现代塑料加工应用, 2013, 25(4): 9-13. |
Kong X S. Enhanced and toughened recovery of ABS resin by elastomer/inorganic nanoparticle composite system[J]. Modern Plastics Processing and Application, 2013, 25(4): 9-13. | |
20 | 唐丽军, 张静旖, 丁永红. 有机硅改性酚醛树脂的研究[J]. 热固性树脂, 2012, 27(1): 14-16. |
Tang L J, Zhang J Y, Ding Y H. Study on modification of phenolic resin by organic silicon[J]. Thermosetting Resin, 2012, 27(1): 14-16. | |
21 | 熊伟. 酚醛树脂的增韧及其泡沫性能[D]. 西安: 陕西科技大学, 2014. |
Xiong W. Toughening and foaming properties of phenolic resin[D]. Xi'an: Shaanxi University of Science and Technology, 2014. | |
22 | Zhang Y D, Lee S H, Yoonessi M, et al. Phenolic resin/octa (aminophenyl) -T8-polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites: synthesis, morphology, thermal and mechanical properties[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17(1): 159-171. |
23 | Liu Y, Zeng K, Zheng S. Organic-inorganic hybrid nanocomposites involving novolac resin and polyhedral oligomeric silsesquioxane[J]. Reactive Functional Polymers, 2007, 67 (7): 627-635. |
24 | Sharifi M, Jang C, Abrams C F, et al. Epoxy polymer networks with improved thermal and mechanical properties via controlled dispersion of reactive toughening agents[J]. Macromolecules, 2015, 48(20): 7495-7502. |
25 | Gao J, Chu X, Henry C K, et al. Highly ductile glassy epoxy systems obtained by network topology modification using partially reacted substructures[J]. Polymer, 2021, 212: 60-69. |
26 | Stokes R H. An improved diaphragm-cell for diffusion studies, and some tests of the method[J]. Journal of the American Chemical Society, 1950, 72(2): 763-767. |
27 | Pang B, Jia Y, Pang S D, et al. The interpenetration polymer network in a cement paste-waterborne epoxy system[J]. Cement and Concrete Research, 2021, 139: 106236. |
28 | 林丽, 张红, 李远, 等. 热固性聚合物的交联密度测试方法研究进展[J]. 热固性树脂, 2012, 27(5): 60-63. |
Lin L, Zhang H, Li Y, et al. The crosslinking density of the thermosetting polymer test method research[J]. Journal of Thermosetting Resin, 2012, 27(5): 60-63. | |
29 | Heise M S, Martin C. Curing mechanism and thermal properties of epoxy-imidazole systems[J]. Macromolecules, 1989, 22(1): 99-104. |
30 | Lei Z, Wang J, Zhang C, et al. Fabrication of a mechanically tough and strong SiO2@EPOSS modified novolac phenolic network by simultaneously improving its crosslinking inhomogeneity and crosslinking density[J]. Composites Science and Technology, 2021, 210: 108810. |
31 | Domínguez J C, Alonso M V, Oliet M, et al. Chemorheological study of the curing kinetics of a phenolic resol resin gelled[J]. European Polymer Journal, 2009, 46(1): 50-57. |
32 | Zhang C, Lei Z, Zhang J, et al. A dense hybrid network of epoxide hyperbranched polyurethane and benzoxazine with improved thermomechanical properties via tuning its curing reaction and physical state[J]. Polymer, 2019, 179: 121659. |
[1] | 郭妍婷, 尹垚骐, 黄雪, 陈曼, 冯光炷. 基于二聚脂肪酸改性苯乙烯聚酯树脂的合成及性能[J]. 化工学报, 2017, 68(S1): 266-275. |
[2] | 马立群1,黄 伟1,2,曲春艳2,王雅珍1,刘洪成1,汪建新1. 二烯丙基双酚A催化改性酚醛型氰酸酯树脂的催化固化[J]. 化工进展, 2013, 32(07): 1570-1572. |
[3] | 任云利,汪同嘉,王键吉. 葡萄糖和木糖共发酵的产氢特性 [J]. CIESC Journal, 2011, 62(9): 2629-2634. |
[4] | 肖伟娜1,黄 雪2,冯光炷3,尹国强3,崔英德3. 聚乳酸增韧改性研究进展 [J]. CIESC Journal, 2011, 30(3): 578-. |
[5] | 周健, 吴承旭, 王国军, 李磊, 杨润苗, 董观秀. 增韧改性聚对苯二甲酸丁二酯/聚碳酸酯共混物非等温结晶动力学与力学性能[J]. 化工学报, 2011, 62(12): 3588-3594. |
[6] | 吴承旭, 周健, 李雪飞, 李磊. PBT/PC合金塑料的性能与微观结构 [J]. 化工学报, 2010, 61(6): 1571-1576. |
[7] | 杨继年, 李子全, 刘晓蓓, 王凌岩, 梁宇翔, 刘劲松. EOC-g-MAH共混增韧SGF/PP泡沫复合材料的制备及力学性能 [J]. 化工学报, 2009, 60(9): 2392-2397. |
[8] | 白战争,赵秀丽,罗雪方,罗世凯. 聚氨酯增韧环氧灌封材料的制备与表征 [J]. CIESC Journal, 2009, 28(6): 1010-. |
[9] | 王文生,高保娇,蒋玉梅,黄曦桥. 纳米SiO2/PS复合材料的制备及性能 [J]. CIESC Journal, 2007, 26(4): 554-. |
[10] | 王东波;田言;冯玉杰;韩俐伟. SiO2-g-PS纳米微球的制备及其在增韧PP中的应用 [J]. CIESC Journal, 2007, 58(12): 3180-3184. |
[11] | 鲁博;张林文;潘则林;王才. 聚氨酯改性不饱和聚酯的徽观结构与性能 [J]. CIESC Journal, 2006, 57(12): 3005-3009. |
[12] | 孙水升, 张玲, 李春忠, 曹宏明, 周秋玲. 纳米碳酸钙性质对聚氯乙烯复合材料界面及性能的影响 [J]. 化工学报, 2005, 56(11): 2233-2239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||