1 |
Goodenough J B, Kim Y. Challenges for rechargeable batteries[J]. Journal of Power Sources, 2011, 196(16): 6688-6694.
|
2 |
Thackeray M M, Wolverton C, Isaacs E D. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7): 7854-7863.
|
3 |
Liu W, Chen Z, Zhou G M, et al. 3D porous sponge-inspired electrode for stretchable lithium-ion batteries[J]. Advanced Materials, 2016, 28(18): 3578-3583.
|
4 |
Delmas C. Sodium and sodium-ion batteries: 50 years of research[J]. Advanced Energy Materials, 2018, 8(17): 1703137.
|
5 |
Deng J Q, Luo W B, Chou S L, et al. Sodium-ion batteries: from academic research to practical commercialization[J]. Advanced Energy Materials, 2018, 8(4): 1701428.
|
6 |
Ellis B L, Nazar L F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion in Solid State and Materials Science, 2012, 16(4): 168-177.
|
7 |
杨绍斌, 董伟, 沈丁, 等. 钠离子电池负极材料的研究进展[J]. 中国有色金属学报, 2016, 26(5): 1054-1064.
|
|
Yang S B, Dong W, Shen D, et al. Research progress of anode material for sodium-ion batteries[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(5): 1054-1064.
|
8 |
Palomares V, Serras P, Villaluenga I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5(3): 5884-5901.
|
9 |
Yin J, Zhang W L, Alhebshi N A, et al. Synthesis strategies of porous carbon for supercapacitor applications[J]. Small Methods, 2020, 4(3): 1900853.
|
10 |
Zhang Y H, Wang N N, Xue P, et al. Co9S8@carbon nanospheres as high-performance anodes for sodium ion battery[J]. Chemical Engineering Journal, 2018, 343: 512-519.
|
11 |
Liu M K, Zhang P, Qu Z H, et al. Conductive carbon nanofiber interpenetrated graphene architecture for ultra-stable sodium ion battery[J]. Nature Communications, 2019, 10: 3917.
|
12 |
Liu J L, Zhang Y Q, Zhang L, et al. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries[J]. Advanced Materials, 2019, 31(24): 1901261.
|
13 |
Zhou D, Fan L Z. Co2P nanoparticles encapsulated in 3D porous N-doped carbon nanosheet networks as an anode for high-performance sodium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(5): 2139-2147.
|
14 |
Yang J Q, Zhou X L, Wu D H, et al. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries[J]. Advanced Materials, 2017, 29(6): 1604108.
|
15 |
Xu X, Zhao R S, Ai W, et al. Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: toward fast sodium storage by tunable pseudocapacitance[J]. Advanced Materials, 2018, 30(27): 1800658.
|
16 |
Shao W L, Hu F Y, Song C, et al. Hierarchical N/S co-doped carbon anodes fabricated through a facile ionothermal polymerization for high-performance sodium ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(11): 6363-6373.
|
17 |
Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4): 217-224.
|
18 |
Qin B, Wang Q, Zhang X H, et al. One-pot synthesis of interconnected porous carbon derived from coal tar pitch and cellulose for high-performance supercapacitors[J]. Electrochimica Acta, 2018, 283: 655-663.
|
19 |
He X J, Ma H, Wang J X, et al. Porous carbon nanosheets from coal tar for high-performance supercapacitors[J]. Journal of Power Sources, 2017, 357: 41-46.
|
20 |
王博阳, 夏吉利, 董晓玲, 等. 不同变质程度煤衍生硬炭的储钠行为研究[J]. 化工学报, 2021, 72(11): 5738-5750.
|
|
Wang B Y, Xia J L, Dong X L, et al. Study on sodium storage behavior of hard carbons derived from coal with different grades of metamorphism[J]. CIESC Journal, 2021, 72(11): 5738-5750.
|
21 |
Liu X F, Antonietti M. Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets[J]. Carbon, 2014, 69: 460-466.
|
22 |
Pang Z Y, Li G S, Xiong X L, et al. Molten salt synthesis of porous carbon and its application in supercapacitors: a review[J]. Journal of Energy Chemistry, 2021, 61: 622-640.
|
23 |
Liu X F, Giordano C, Antonietti M. A facile molten-salt route to graphene synthesis[J]. Small, 2014, 10(1): 193-200.
|
24 |
Yu Z F, Wang X Z, Hou Y N, et al. Nitrogen-doped mesoporous carbon nanosheets derived from metal-organic frameworks in a molten salt medium for efficient desulfurization[J]. Carbon, 2017, 117: 376-382.
|
25 |
Wang Y X, Wang Y W, Liu J L, et al. Preparation of carbon nanosheets from petroleum asphalt via recyclable molten-salt method for superior lithium and sodium storage[J]. Carbon, 2017, 122: 344-351.
|
26 |
Wang Y X, Tian W, Wang L H, et al. A tunable molten-salt route for scalable synthesis of ultrathin amorphous carbon nanosheets as high-performance anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5577-5585.
|
27 |
Peng T Y, Tan Z H, Zhang M D, et al. Facile and cost-effective manipulation of hierarchical carbon nanosheets for pseudocapacitive lithium/potassium storage[J]. Carbon, 2020, 165: 296-305.
|
28 |
Xing B L, Zeng H H, Huang G X, et al. Magnesium citrate induced growth of noodle-like porous graphitic carbons from coal tar pitch for high-performance lithium-ion batteries[J]. Electrochimica Acta, 2021, 376: 138043.
|
29 |
冯雪廷, 矫庆泽, 李群, 等. NiCo2S4/N, S-rGO纳米复合材料的制备和电化学储钠性能[J]. 化工学报, 2020, 71(9): 4314-4324.
|
|
Feng X T, Jiao Q Z, Li Q, et al. Preparation and sodium storage performance of NiCo2S4/N, S-rGO nanocomposites[J]. CIESC Journal, 2020, 71(9): 4314-4324.
|
30 |
张毅舟, 吴籼虹, 王治宇, 等. 镶嵌单层MoS2的生物质基硼氮共掺杂碳纳米片合成与储钠性能[J]. 化工学报, 2021, 72(12): 6371-6379.
|
|
Zhang Y Z, Wu X H, Wang Z Y, et al. Biomass-derived B/N co-doped carbon nanosheets decorated with single-layered MoS2 for sodium storage[J]. CIESC Journal, 2021, 72(12): 6371-6379.
|
31 |
Gaddam R R, Yang D F, Narayan R, et al. Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries[J]. Nano Energy, 2016, 26: 346-352.
|
32 |
Yoon D, Hwang J, Chang W, et al. Carbon with expanded and well-developed graphene planes derived directly from condensed lignin as a high-performance anode for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 569-581.
|
33 |
Zou G Q, Wang C, Hou H S, et al. Controllable interlayer spacing of sulfur-doped graphitic carbon nanosheets for fast sodium-ion batteries[J]. Small, 2017, 13(31): 1700762.
|