化工学报 ›› 2022, Vol. 73 ›› Issue (12): 5289-5304.DOI: 10.11949/0438-1157.20221033
收稿日期:
2022-07-26
修回日期:
2022-09-29
出版日期:
2022-12-05
发布日期:
2023-01-17
通讯作者:
张希
作者简介:
贾理男(1986—),女,博士研究生,助理研究员,jialinanjessica@126.com
基金资助:
Linan JIA1(), Yibo DU1, Bangjun GUO1, Xi ZHANG1,2()
Received:
2022-07-26
Revised:
2022-09-29
Online:
2022-12-05
Published:
2023-01-17
Contact:
Xi ZHANG
摘要:
全固态锂电池(ASSLBs)比目前的液态锂电池具有更高的能量密度与安全性,是下一代能量存储设备的主要研究方向。相较于其他电解质,硫化物固态电解质具有超高离子电导率、硬度低、易加工、界面接触好等特性,是实现全固态电池最有希望的路线之一。然而,硫化物固态电解质与负极的界面问题,如电解质/负极界面的副反应、固-固接触性差以及锂枝晶等是制约硫化物全固态电池实际应用的重要阻碍。本文概述了目前对匹配硫化物电解质的全固态锂电池主流负极材料的研究现状,总结了金属锂、锂合金、含硅负极等基于硫化物电解质的全固态锂电池的发展现状、应用优势、界面问题及主流解决策略,并为下一步基于硫化物固态电解质的全固态锂电池负极材料的研发与界面问题的解决提供了指导性建议。
中图分类号:
贾理男, 杜一博, 郭邦军, 张希. 基于硫化物电解质的全固态锂离子电池负极研究进展[J]. 化工学报, 2022, 73(12): 5289-5304.
Linan JIA, Yibo DU, Bangjun GUO, Xi ZHANG. Recent progress on anode for sulfide-based all-solid-state lithium batteries[J]. CIESC Journal, 2022, 73(12): 5289-5304.
图2 全固态锂电池的外加堆栈压力与锂的剥离、沉积最大允许电流密度之间的关系[38]
Fig.2 Relationship between maximum allowed current density (MACD) and external pressure for stripping and deposition in ASSLBs[38]
图4 三明治结构电解质结构设计示意图及全固态电池的长循环充放电曲线[48]
Fig.4 Schematic diagram of sandwich structure electrolyte design and long cycle electrochemical performance curve[48]
负极类型 | 改善策略 | 优点 | 缺点 | 文献 |
---|---|---|---|---|
锂金属 | 施加外压 | 提高负极/电解质的固-固接触面积,利于锂离子的传输 | 无法解决负极界面的稳定性问题 | [ |
人工SEI膜 | 避免了锂金属与硫化物固态电解质的直接接触,有效抑制了副反应的反应,改善了负极界面稳定性,提高了电池的循环寿命 | 人工SEI随着电池循环会不断消耗,最终仍会导致锂金属与硫化物电解质的直接接触,影响电池的使用寿命 | [ | |
电解质优化 | 抑制界面副反应的发生 | 电池长循环仍会产生界面的副反应以及锂枝晶的形成 | [ | |
锂负极的改性 | 避免将锂金属与硫化物电解质直接接触,抑制副反应与锂枝晶的产生 | 单一的负极改性无法抑制锂枝晶的形成,还需要对电解质的结构、组成进行优化设计 | [ | |
合金负极 | 将锂合金取代锂金属,如Li-In、Li-Al、Li-Sn、Li-Si合金等 | 锂合金负极可以提高界面润湿性,抑制界面副反应的发生,增强固态电解质界面的化学机械稳定性,避免锂枝晶生长造成的短路 | Li-M合金中,M为金属时,金属的氧化还原电位和分子量都较高,极大降低了固态电池的能量密度优势。Li-Si合金尚未有较好的数据支撑 | [ |
含硅负极 | 将含硅负极取代锂金属,如Si-C、nm-Si、μ-Si负极等 | 含硅负极具有超高的理论比容量,较低的工作电位,多项研究表明,硅负极与硫化物电解质具有良好的界面稳定性,是全固态锂电池极佳的负极选择 | nm-Si负极的成本较高,限制了规模化生产应用 | [ |
表1 负极界面解决策略
Table 1 Addressing strategies of interfacial issues between anodes and sulfide-based solid-state electrolytes
负极类型 | 改善策略 | 优点 | 缺点 | 文献 |
---|---|---|---|---|
锂金属 | 施加外压 | 提高负极/电解质的固-固接触面积,利于锂离子的传输 | 无法解决负极界面的稳定性问题 | [ |
人工SEI膜 | 避免了锂金属与硫化物固态电解质的直接接触,有效抑制了副反应的反应,改善了负极界面稳定性,提高了电池的循环寿命 | 人工SEI随着电池循环会不断消耗,最终仍会导致锂金属与硫化物电解质的直接接触,影响电池的使用寿命 | [ | |
电解质优化 | 抑制界面副反应的发生 | 电池长循环仍会产生界面的副反应以及锂枝晶的形成 | [ | |
锂负极的改性 | 避免将锂金属与硫化物电解质直接接触,抑制副反应与锂枝晶的产生 | 单一的负极改性无法抑制锂枝晶的形成,还需要对电解质的结构、组成进行优化设计 | [ | |
合金负极 | 将锂合金取代锂金属,如Li-In、Li-Al、Li-Sn、Li-Si合金等 | 锂合金负极可以提高界面润湿性,抑制界面副反应的发生,增强固态电解质界面的化学机械稳定性,避免锂枝晶生长造成的短路 | Li-M合金中,M为金属时,金属的氧化还原电位和分子量都较高,极大降低了固态电池的能量密度优势。Li-Si合金尚未有较好的数据支撑 | [ |
含硅负极 | 将含硅负极取代锂金属,如Si-C、nm-Si、μ-Si负极等 | 含硅负极具有超高的理论比容量,较低的工作电位,多项研究表明,硅负极与硫化物电解质具有良好的界面稳定性,是全固态锂电池极佳的负极选择 | nm-Si负极的成本较高,限制了规模化生产应用 | [ |
1 | Hatzell K B, Chen X C, Cobb C L, et al. Challenges in lithium metal anodes for solid-state batteries[J]. ACS Energy Letters, 2020, 5(3): 922-934. |
2 | Ashuri M, He Q R, Shaw L L. Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter[J]. Nanoscale, 2016, 8(1): 74-103. |
3 | Dunlap N A, Kim S, Jeong J J, et al. Simple and inexpensive coal-tar-pitch derived Si-C anode composite for all-solid-state Li-ion batteries[J]. Solid State Ionics, 2018, 324: 207-217. |
4 | Trevey J, Jang J S, Jung Y S, et al. Glass-ceramic Li2S-P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium-ion batteries[J]. Electrochemistry Communications, 2009, 11(9): 1830-1833. |
5 | Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1: 16030. |
6 | Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. |
7 | Iwasaki R, Hori S, Kanno R, et al. Weak anisotropic lithium-ion conductivity in single crystals of Li10GeP2S12 [J]. Chemistry of Materials, 2019, 31(10): 3694-3699. |
8 | Deiseroth H J, Kong S T, Eckert H, et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angewandte Chemie, 2008, 47(4): 755-758. |
9 | Xu R C, Xia X H, Yao Z J, et al. Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries[J]. Electrochimica Acta, 2016, 219: 235-240. |
10 | Wenzel S, Sedlmaier S J, Dietrich C, et al. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes[J]. Solid State Ionics, 2018, 318: 102-112. |
11 | Shen Z Y, Zhang W D, Zhu G N, et al. Design principles of the anode-electrolyte interface for all solid-state lithium metal batteries[J]. Small Methods, 2020, 4(1): 1900592. |
12 | Zhang Q, Cao D X, Ma Y, et al. Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries[J]. Advanced Materials, 2019, 31(44): 1901131. |
13 | McCloskey B D. Attainable gravimetric and volumetric energy density of Li-S and Li ion battery cells with solid separator-protected Li metal anodes[J]. The Journal of Physical Chemistry Letters, 2015, 6(22): 4581-4588. |
14 | Betz J, Bieker G, Meister P, et al. Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems[J]. Advanced Energy Materials, 2019, 9(22): 1900761. |
15 | 吴敬华, 姚霞银. 基于硫化物固体电解质全固态锂电池界面特性研究进展[J]. 储能科学与技术, 2020, 9(2): 501-514. |
Wu J H, Yao X Y. Recent progress in interfaces of all-solid-state lithium batteries based on sulfide electrolytes[J]. Energy Storage Science and Technology, 2020, 9(2): 501-514. | |
16 | Wenzel S, Leichtweiss T, Krüger D, et al. Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy[J]. Solid State Ionics, 2015, 278: 98-105. |
17 | Wenzel S, Randau S, Leichtweiß T, et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode[J]. Chemistry of Materials, 2016, 28(7): 2400-2407. |
18 | Mukhopadhyay A, Sheldon B W. Deformation and stress in electrode materials for Li-ion batteries[J]. Progress in Materials Science, 2014, 63: 58-116. |
19 | Koerver R, Zhang W B, de Biasi L, et al. Chemo-mechanical expansion of lithium electrode materials—on the route to mechanically optimized all-solid-state batteries[J]. Energy & Environmental Science, 2018, 11(8): 2142-2158. |
20 | Cannarella J, Arnold C B. State of health and charge measurements in lithium-ion batteries using mechanical stress[J]. Journal of Power Sources, 2014, 269: 7-14. |
21 | Tian H K, Qi Y. Simulation of the effect of contact area loss in all-solid-state Li-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(11): E3512-E3521. |
22 | Fincher C D, Ojeda D, Zhang Y W, et al. Mechanical properties of metallic lithium: from nano to bulk scales[J]. Acta Materialia, 2020, 186: 215-222. |
23 | Masias A, Felten N, Garcia-Mendez R, et al. Elastic, plastic, and creep mechanical properties of lithium metal[J]. Journal of Materials Science, 2019, 54(3): 2585-2600. |
24 | Narayan S, Anand L. A large deformation elastic-viscoplastic model for lithium[J]. Extreme Mechanics Letters, 2018, 24: 21-29. |
25 | Herbert E G, Hackney S A, Thole V, et al. Nanoindentation of high-purity vapor deposited lithium films: a mechanistic rationalization of diffusion-mediated flow[J]. Journal of Materials Research, 2018, 33(10): 1347-1360. |
26 | Herbert E G, Hackney S A, Thole V, et al. Nanoindentation of high-purity vapor deposited lithium films: a mechanistic rationalization of the transition from diffusion to dislocation-mediated flow[J]. Journal of Materials Research, 2018, 33(10): 1361-1368. |
27 | Herbert E G, Hackney S A, Dudney N J, et al. Nanoindentation of high-purity vapor deposited lithium films: the elastic modulus[J]. Journal of Materials Research, 2018, 33(10): 1335-1346. |
28 | Xu C C, Shen Y Q, Li J, et al. Robust superhydrophobic carbon fiber sponge used for efficient oil/corrosive solution mixtures separation[J]. Vacuum, 2017, 141: 57-61. |
29 | Monroe C, Newman J. Dendrite growth in lithium/polymer systems[J]. Journal of the Electrochemical Society, 2003, 150(10): A1377. |
30 | Monroe C, Newman J. The effect of interfacial deformation on electrodeposition kinetics[J]. Journal of the Electrochemical Society, 2004, 151(6): A880. |
31 | Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. Journal of the Electrochemical Society, 2005, 152(2): A396. |
32 | Porz L, Swamy T, Sheldon B W, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes[J]. Advanced Energy Materials, 2017, 7(20): 1701003. |
33 | Swamy T, Park R, Sheldon B W, et al. Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet[J]. Journal of the Electrochemical Society, 2018, 165(16): A3648-A3655. |
34 | Nagao M, Hayashi A, Tatsumisago M, et al. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte[J]. Physical Chemistry Chemical Physics: PCCP, 2013, 15(42): 18600-18606. |
35 | Yu S, Siegel D J. Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO)[J]. Chemistry of Materials, 2017, 29(22): 9639-9647. |
36 | Raj R, Wolfenstine J. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries[J]. Journal of Power Sources, 2017, 343: 119-126. |
37 | Zhang X, Wang Q J, Harrison K L, et al. Pressure-driven interface evolution in solid-state lithium metal batteries[J]. Cell Reports Physical Science, 2020, 1(2): 100012. |
38 | Wang Y X, Liu T J, Kumar J. Effect of pressure on lithium metal deposition and stripping against sulfide-based solid electrolytes[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 34771-34776. |
39 | Wang C, Sun X L, Yang L, et al. In situ ion-conducting protective layer strategy to stable lithium metal anode for all-solid-state sulfide-based lithium metal batteries[J]. Advanced Materials Interfaces, 2021, 8(1): 2001698. |
40 | Li J R, Su H, Li M, et al. A deformable dual-layer interphase for high-performance Li10GeP2S12-based solid-state Li metal batteries[J]. Chemical Engineering Journal, 2022, 431: 134019. |
41 | Gao Y, Wang D W, Li Y C, et al. Salt-based organic-inorganic nanocomposites: towards a stable lithium metal/Li10GeP2S12 solid electrolyte interface[J]. Angewandte Chemie, 2018, 57(41): 13608-13612. |
42 | Duan C, Cheng Z, Li W, et al. Realizing the compatibility of a Li metal anode in an all-solid-state Li–S battery by chemical iodine-vapor deposition[J]. Energy & Environmental Science, 2022, 15(8): 3236-3245. |
43 | Liang J W, Li X N, Zhao Y, et al. An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries[J]. Advanced Energy Materials, 2019, 9(38): 1902125. |
44 | Wang C H, Adair K R, Liang J W, et al. Solid-state plastic crystal electrolytes: effective protection interlayers for sulfide-based all-solid-state lithium metal batteries[J]. Advanced Functional Materials, 2019, 29(26): 1900392. |
45 | Sun Y L, Suzuki K, Hara K, et al. Oxygen substitution effects in Li10GeP2S12 solid electrolyte[J]. Journal of Power Sources, 2016, 324: 798-803. |
46 | Xu R C, Xia X H, Wang X L, et al. Tailored Li2S–P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(6): 2829-2834. |
47 | Liu G Z, Xie D J, Wang X L, et al. High air-stability and superior lithium ion conduction of Li3+3 x P1- x Zn x S4- x O x by aliovalent substitution of ZnO for all-solid-state lithium batteries[J]. Energy Storage Materials, 2019, 17: 266-274. |
48 | Ye L H, Li X. A dynamic stability design strategy for lithium metal solid state batteries[J]. Nature, 2021, 593(7858): 218-222. |
49 | Su Y B, Ye L H, Fitzhugh W, et al. A more stable lithium anode by mechanical constriction for solid state batteries[J]. Energy & Environmental Science, 2020, 13(3): 908-916. |
50 | Gil-González E, Ye L H, Wang Y C, et al. Synergistic effects of chlorine substitution in sulfide electrolyte solid state batteries[J]. Energy Storage Materials, 2022, 45: 484-493. |
51 | Lewis J A, Cavallaro K A, Liu Y, et al. The promise of alloy anodes for solid-state batteries[J]. Joule, 2022, 6(7): 1418-1430. |
52 | Santhosha A L, Medenbach L, Buchheim J R, et al. The indium-lithium electrode in solid-state lithium-ion batteries: phase formation, redox potentials, and interface stability[J]. Batteries & Supercaps, 2019, 2(6): 524-529. |
53 | Whiteley J M, Taynton P, Zhang W, et al. Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix[J]. Advanced Materials, 2015, 27(43): 6922-6927. |
54 | Cao D X, Zhang Y B, Nolan A M, et al. Stable thiophosphate-based all-solid-state lithium batteries through conformally interfacial nanocoating[J]. Nano Letters, 2020, 20(3): 1483-1490. |
55 | Auvergniot J, Cassel A, Ledeuil J B, et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries[J]. Chemistry of Materials, 2017, 29(9): 3883-3890. |
56 | Luo S T, Wang Z Y, Li X L, et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes[J]. Nature Communications, 2021, 12: 6968. |
57 | Pan H, Zhang M H, Cheng Z, et al. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability[J]. Science Advances, 2022, 8(15): eabn4372. |
58 | Sakuma M, Suzuki K, Hirayama M, et al. Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li-M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes[J]. Solid State Ionics, 2016, 285: 101-105. |
59 | Hashimoto Y, Machida N, Shigematsu T. Preparation of Li4.4Ge x Si1- x alloys by mechanical milling process and their properties as anode materials in all-solid-state lithium batteries[J]. Solid State Ionics, 2004, 175(1/2/3/4): 177-180. |
60 | Park H W, Song J H, Choi H, et al. Anode performance of lithium-silicon alloy prepared by mechanical alloying for use in all-solid-state lithium secondary batteries[J]. Japanese Journal of Applied Physics, 2014, 53(8S3): 08NK02. |
61 | Choi H J, Kang D W, Park J W, et al. In situ formed Ag-Li intermetallic layer for stable cycling of all-solid-state lithium batteries [J]. Advanced Science, 2022, 9(1): 2103826. |
62 | Kato A, Suyama M, Hotehama C, et al. High-temperature performance of all-solid-state lithium-metal batteries having Li/Li3PS4 interfaces modified with Au thin films[J]. Journal of the Electrochemical Society, 2018, 165(9): A1950-A1954. |
63 | Kato A, Kowada H, Deguchi M, et al. XPS and SEM analysis between Li/Li3PS4 interface with Au thin film for all-solid-state lithium batteries[J]. Solid State Ionics, 2018, 322: 1-4. |
64 | Kato A, Hayashi A, Tatsumisago M. Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films[J]. Journal of Power Sources, 2016, 309: 27-32. |
65 | Ko M, Chae S, Jeong S, et al. Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries[J]. ACS Nano, 2014, 8(8): 8591-8599. |
66 | Zhang F Z, Yang J P. Boosting initial coulombic efficiency of Si-based anodes: a review[J]. Emergent Materials, 2020, 3(3): 369-380. |
67 | Beaulieu L Y, Eberman K W, Turner R L, et al. Colossal reversible volume changes in lithium alloys[J]. Electrochemical and Solid-State Letters, 2001, 4(9): A137. |
68 | Poetke S, Hippauf F, Baasner A, et al. Nanostructured Si-C composites as high-capacity anode material for all-solid-state lithium-ion batteries[J]. Batteries & Supercaps, 2021, 4(8): 1323-1334. |
69 | Sakabe J, Ohta N, Ohnishi T, et al. Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries[J]. Communications Chemistry, 2018, 1: 24. |
70 | Okuno R, Yamamoto M, Terauchi Y, et al. Stable cyclability of porous Si anode applied for sulfide-based all-solid-state batteries[J]. Energy Procedia, 2019, 156: 183-186. |
71 | Cangaz S, Hippauf F, Reuter F S, et al. Enabling high-energy solid-state batteries with stable anode interphase by the use of columnar silicon anodes[J]. Advanced Energy Materials, 2020, 10(34): 2001320. |
72 | Ohta N, Kimura S, Sakabe J, et al. Anode properties of Si nanoparticles in all-solid-state Li batteries[J]. ACS Applied Energy Materials, 2019, 2(10): 7005-7008. |
73 | Cao D X, Sun X, Li Y J, et al. Long-cycling sulfide-based all-solid-state batteries enabled by electrochemo-mechanically stable electrodes[J]. Advanced Materials, 2022, 34(24): 2200401. |
74 | Tan D H S, Chen Y T, Yang H D, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes[J]. Science, 2021, 373(6562): 1494-1499. |
75 | Cao D X, Sun X, Wang Y, et al. Bipolar stackings high voltage and high cell level energy density sulfide based all-solid-state batteries[J]. Energy Storage Materials, 2022, 48: 458-465. |
76 | Lee Y G, Fujiki S, Jung C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308. |
77 | Otoyama M, Sakuda A, Hayashi A, et al. Optical microscopic observation of graphite composite negative electrodes in all-solid-state lithium batteries[J]. Solid State Ionics, 2018, 323: 123-129. |
78 | Oh D Y, Kim D H, Jung S H, et al. Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(39): 20771-20779. |
79 | Oh P, Yun J, Choi J H, et al. Development of high-energy anodes for all-solid-state lithium batteries based on sulfide electrolytes[J]. Angewandte Chemie, 2022, 61(25): e202201249. |
80 | Heubner C, Maletti S, Auer H, et al. From lithium-metal toward anode-free solid-state batteries: current developments, issues, and challenges[J]. Advanced Functional Materials, 2021, 31(51): 2106608. |
81 | Gu D, Kim H, Lee J H, et al. Surface-roughened current collectors for anode-free all-solid-state batteries[J]. Journal of Energy Chemistry, 2022, 70: 248-257. |
82 | Wu J H, Liu S F, Han F D, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Advanced Materials, 2021, 33(6): 2000751. |
83 | Wang X Y, He K, Li S Y, et al. Realizing high-performance all-solid-state batteries with sulfide solid electrolyte and silicon anode: a review[J]. Nano Research, 2022, . |
84 | Wang S, Fang R Y, Li Y T, et al. Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes[J]. Journal of Materiomics, 2021, 7(2): 209-218. |
[1] | 崔锦,石川,赵金保. 机械压力对锂电池性能影响的研究进展[J]. 化工学报, 2021, 72(7): 3511-3523. |
[2] | 张睿, 沈馨, 袁洪, 程新兵, 黄佳琦, 张强. 二次电池中金属锂负极沉脱机理研究进展[J]. 化工学报, 2021, 72(12): 6144-6160. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 878
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1204
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||