化工学报 ›› 2021, Vol. 72 ›› Issue (12): 6144-6160.DOI: 10.11949/0438-1157.20211242
张睿1,2(),沈馨2,袁洪1,程新兵2,黄佳琦1,张强2()
收稿日期:
2021-08-26
修回日期:
2021-11-02
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
张强
作者简介:
张睿(1993—),男,博士,基金资助:
Rui ZHANG1,2(),Xin SHEN2,Hong YUAN1,Xinbing CHENG2,Jiaqi HUANG1,Qiang ZHANG2()
Received:
2021-08-26
Revised:
2021-11-02
Online:
2021-12-05
Published:
2021-12-22
Contact:
Qiang ZHANG
摘要:
金属锂负极是下一代高比能二次电池备受关注的负极材料,以金属锂为负极的锂金属电池具备极高的理论能量密度,但其仍存在充放电循环效率低、电池寿命短等问题。要实现高能量密度高安全性的锂金属电池的合理设计和优化,需要对金属锂负极中锂金属沉积脱出过程的离子输运、电子输运、界面反应等机制机理有清晰的认识。本文针对金属锂负极中存在的枝晶生长、死锂形成、固体电解质界面膜作用等机理问题,综述了研究者们在其沉脱机理的模型与理论计算、实验研究等方面做出的诸多研究进展,为锂金属电池的合理设计提供了更全面的机理认识。
中图分类号:
张睿, 沈馨, 袁洪, 程新兵, 黄佳琦, 张强. 二次电池中金属锂负极沉脱机理研究进展[J]. 化工学报, 2021, 72(12): 6144-6160.
Rui ZHANG, Xin SHEN, Hong YUAN, Xinbing CHENG, Jiaqi HUANG, Qiang ZHANG. Recent progress on lithium plating/stripping mechanisms in lithium metal batteries[J]. CIESC Journal, 2021, 72(12): 6144-6160.
1 | Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
2 | Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
3 | Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29. |
4 | Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
5 | Liu J, Bao Z N, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186. |
6 | Chen X R, Zhao B C, Yan C, et al. Review on Li deposition in working batteries: from nucleation to early growth[J]. Advanced Materials, 2021, 33(8): 2004128. |
7 | Cheng X B, Liu H, Yuan H, et al. A perspective on sustainable energy materials for lithium batteries[J]. SusMat, 2021, 1(1): 38-50. |
8 | Wang R H, Cui W S, Chu F L, et al. Lithium metal anodes: present and future[J]. Journal of Energy Chemistry, 2020, 48: 145-159. |
9 | Chen X, Li H R, Shen X, et al. The origin of the reduced reductive stability of ion-solvent complexes on alkali and alkaline earth metal anodes[J]. Angewandte Chemie International Edition, 2018, 57(51): 16643-16647. |
10 | Zhang X Q, Jin Q, Nan Y L, et al. Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2021, 60(28): 15503-15509. |
11 | Wan C, Xu S, Hu M Y, et al. Multinuclear NMR study of the solid electrolyte interface formed in lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 14741-14748. |
12 | Vaughey J T, Liu G, Zhang J G. Stabilizing the surface of lithium metal[J]. MRS Bulletin, 2014, 39(5): 429-435. |
13 | Li Y, Li Y, Pei A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510. |
14 | Wang A P, Kadam S, Li H, et al. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries[J]. Npj Computational Materials, 2018, 4: 15. |
15 | Yang Y, Yan C, Huang J Q. Research progress of solid electrolyte interphase in lithium batteries[J]. Acta Physico Chimica Sinica, 2021, 37(11): 2010076. |
16 | Yu X W, Manthiram A. Electrode-electrolyte interfaces in lithium-based batteries[J]. Energy & Environmental Science, 2018, 11(3): 527-543. |
17 | Li Y Z, Huang W, Li Y B, et al. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy[J]. Joule, 2018, 2(10): 2167-2177. |
18 | Shi S, Lu P, Liu Z, et al. Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. Journal of the American Chemical Society, 2012, 134(37): 15476-15487. |
19 | Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. Journal of the Electrochemical Society, 1997, 144(8): L208-L210. |
20 | Yan C, Cheng X B, Yao Y X, et al. An armored mixed conductor interphase on a dendrite-free lithium-metal anode[J]. Advanced Materials, 2018, 30(45): 1804461. |
21 | Xu R, Shen X, Ma X X, et al. Identifying the critical anion-cation coordination to regulate the electric double layer for an efficient lithium-metal anode interface[J]. Angewandte Chemie International Edition, 2021, 60(8): 4215-4220. |
22 | He Y, Ren X D, Xu Y B, et al. Origin of lithium whisker formation and growth under stress[J]. Nature Nanotechnology, 2019, 14(11): 1042-1047. |
23 | Zachman M J, Tu Z Y, Choudhury S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718): 345-349. |
24 | Biswal P, Stalin S, Kludze A, et al. Nucleation and early stage growth of Li electrodeposits[J]. Nano Letters, 2019, 19(11): 8191-8200. |
25 | Sun X W, Zhang X Y, Ma Q T, et al. Revisiting the electroplating process for lithium-metal anodes for lithium-metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(17): 6665-6674. |
26 | Shen C, Hu G H, Cheong L Z, et al. Direct observation of the growth of lithium dendrites on graphite anodes by operando EC-AFM[J]. Small Methods, 2018, 2(2): 1700298. |
27 | Li L, Li S, Lu Y. Suppression of dendritic lithium growth in lithium metal-based batteries[J]. Chemical Communications, 2018, 54(50): 6648-6661. |
28 | Liu H, Cheng X B, Jin Z H, et al. Recent advances in understanding dendrite growth on alkali metal anodes[J]. EnergyChem, 2019, 1(1): 100003. |
29 | Pu K C, Zhang X, Qu X L, et al. Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries[J]. Rare Metals, 2020, 39(6): 616-635. |
30 | 沈馨, 张睿, 程新兵, 等. 锂枝晶的原位观测及生长机制研究进展[J]. 储能科学与技术, 2017, 6(3): 418-432. |
Shen X, Zhang R, Cheng X B, et al. Recent progress on in situ observation and growth mechanism of lithium metal dendrites[J]. Energy Storage Science and Technology, 2017, 6(3): 418-432. | |
31 | Tikekar M D, Choudhury S, Tu Z Y, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nature Energy, 2016, 1(9): 1-7. |
32 | Fan H L, Gao C H, Jiang H, et al. A systematical study on the electrodeposition process of metallic lithium[J]. Journal of Energy Chemistry, 2020, 49: 59-70. |
33 | Li N, Ye Q, Zhang K, et al. Normalized lithium growth from the nucleation stage for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition, 2019, 58(50): 18246-18251. |
34 | Shi F F, Pei A, Boyle D T, et al. Lithium metal stripping beneath the solid electrolyte interphase[J]. PNAS, 2018, 115(34): 8529-8534. |
35 | Huang F Y, Wang S, Jie Y L, et al. Deciphering pitting behavior of lithium metal anodes in lithium sulfur batteries[J]. Journal of Energy Chemistry, 2020, 49: 257-261. |
36 | Liu H, Cheng X B, Xu R, et al. Plating/stripping behavior of actual lithium metal anode[J]. Advanced Energy Materials, 2019, 9(44): 1902254. |
37 | Fang C C, Li J X, Zhang M H, et al. Quantifying inactive lithium in lithium metal batteries[J]. Nature, 2019, 572(7770): 511-515. |
38 | Aryanfar A, Brooks D J, Colussi A J, et al. Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries[J]. Phys. Chem. Chem. Phys., 2014, 16(45): 24965-24970. |
39 | Chen K H, Wood K N, Kazyak E, et al. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes[J]. Journal of Materials Chemistry A, 2017, 5(23): 11671-11681. |
40 | Wood K N, Kazyak E, Chadwick A F, et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy[J]. ACS Cent. Sci., 2016, 2(11): 790-801. |
41 | Shi P, Cheng X B, Li T, et al. Electrochemical diagram of an ultrathin lithium metal anode in pouch cells[J]. Advanced Materials, 2019, 31(37): 1902785. |
42 | Xia S X, Lopez J, Liang C, et al. High-rate and large-capacity lithium metal anode enabled by volume conformal and self-healable composite polymer electrolyte[J]. Advanced Science, 2019, 6(9): 1802353. |
43 | Cai W, Yao Y X, Zhu G L, et al. A review on energy chemistry of fast-charging anodes[J]. Chemical Society Reviews, 2020, 49(12): 3806-3833. |
44 | Han Y Y, Liu B, Xiao Z, et al. Interface issues of lithium metal anode for high-energy batteries: challenges, strategies, and perspectives[J]. InfoMat, 2021, 3(2): 155-174. |
45 | Yan C, Zhang X Q, Huang J Q, et al. Lithium-anode protection in lithium-sulfur batteries[J]. Trends in Chemistry, 2019, 1(7): 693-704. |
46 | Yan C, Xu R, Qin J L, et al. 4.5 V high-voltage rechargeable batteries enabled by the reduction of polarization on the lithium metal anode[J]. Angewandte Chemie International Edition, 2019, 58(43): 15235-15238. |
47 | Shen X, Liu H, Cheng X B, et al. Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes[J]. Energy Storage Materials, 2018, 12: 161-175. |
48 | Li L Y, Chen C G, Yu A S. New electrochemical energy storage systems based on metallic lithium anode-the research status, problems and challenges of lithium-sulfur, lithium-oxygen and all solid state batteries[J]. Science China Chemistry, 2017, 60(11): 1402-1412. |
49 | Adams B D, Zheng J M, Ren X D, et al. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries[J]. Advanced Energy Materials, 2018, 8(7): 1702097. |
50 | Lin D, Liu Y, Li Y, et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism[J]. Nature Chemistry, 2019, 11(4): 382-389. |
51 | Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation[J]. Electrochimica Acta, 1983, 28(7): 879-889. |
52 | Chazalviel J. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review. A, Atomic, Molecular, and Optical Physics, 1990, 42(12): 7355-7367. |
53 | Monroe C, Newman J. Dendrite growth in lithium/polymer systems[J]. Journal of the Electrochemical Society, 2003, 150(10): A1377. |
54 | Akolkar R. Mathematical model of the dendritic growth during lithium electrodeposition[J]. Journal of Power Sources, 2013, 232: 23-28. |
55 | Akolkar R. Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature[J]. Journal of Power Sources, 2014, 246: 84-89. |
56 | Aryanfar A, Brooks D, Merinov B V, et al. Dynamics of lithium dendrite growth and inhibition: pulse charging experiments and Monte Carlo calculations[J]. The Journal of Physical Chemistry Letters, 2014, 5(10): 1721-1726. |
57 | Liang Z, Yan K, Zhou G, et al. Composite lithium electrode with mesoscale skeleton via simple mechanical deformation[J]. Science Advances, 2019, 5(3): eaau5655. |
58 | 林振康, 乔耀璇, 王伟, 等. 基于非线性动力学的锂沉积形貌模拟与预测[J]. 化工学报, 2020, 71(9): 4228-4237. |
Lin Z K, Qiao Y X, Wang W, et al. Morphology prediction of lithium plating by finite element modeling and simulations based on non-linear kinetics [J]. CIESC Journal, 2020, 71(9): 4228-4237. | |
59 | Shen X, Zhang R, Chen X, et al. Solid electrolyte interphase: the failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength?[J]. Advanced Energy Materials, 2020, 10(10): 2070045. |
60 | Xu B Q, Liu Z, Li J X, et al. Engineering interfacial adhesion for high-performance lithium metal anode[J]. Nano Energy, 2020, 67: 104242. |
61 | Li G X, Liu Z, Wang D W, et al. Electrokinetic phenomena enhanced lithium-ion transport in leaky film for stable lithium metal anodes[J]. Advanced Energy Materials, 2019, 9(22): 1900704. |
62 | Bazant M Z. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics[J]. Accounts of Chemical Research, 2013, 46(5): 1144-1160. |
63 | Nadkarni N, Zhou T T, Fraggedakis D, et al. Modeling the metal-insulator phase transition in LixCoO2 for energy and information storage[J]. Advanced Functional Materials, 2019, 29(40): 1902821. |
64 | 张睿, 沈馨, 王金福, 等. 锂离子在三维骨架复合锂金属负极中的沉积规律[J]. 化工学报, 2020, 71(6): 2688-2695. |
Zhang R, Shen X, Wang J F, et al. Plating of Li ions in 3D structured lithium metal anodes [J]. CIESC Journal, 2020, 71(6): 2688-2695. | |
65 | Guyer J E, Boettinger W J, Warren J A, et al. Phase field modeling of electrochemistry(I): Equilibrium[J]. Physical Review E, 2004, 69(2): 021603. |
66 | Guyer J E, Boettinger W J, Warren J A, et al. Phase field modeling of electrochemistry(Ⅱ): Kinetics[J]. Physical Review E, 2004, 69(2): 021604. |
67 | Shibuta Y, Okajima Y, Suzuki T. Phase-field modeling for electrodeposition process[J]. Science and Technology of Advanced Materials, 2007, 8(6): 511-518. |
68 | Chen L, Zhang H W, Liang L Y, et al. Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300: 376-385. |
69 | Tian H K, Liu Z, Ji Y Z, et al. Interfacial electronic properties dictate Li dendrite growth in solid electrolytes[J]. Chemistry of Materials, 2019, 31(18): 7351-7359. |
70 | Zhang R, Shen X, Cheng X B, et al. The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation? [J]. Energy Storage Materials, 2019, 23: 556-565. |
71 | Shen X, Zhang R, Shi P, et al. How does external pressure shape Li dendrites in Li metal batteries? [J]. Advanced Energy Materials, 2021, 11(10): 2003416. |
72 | Jana A, Woo S I, Vikrant K S N, et al. Electrochemomechanics of lithium dendrite growth[J]. Energy & Environmental Science, 2019, 12(12): 3595-3607. |
73 | Liu H, Cheng X B, Zhang R, et al. Mesoporous graphene hosts for dendrite-free lithium metal anode in working rechargeable batteries[J]. Transactions of Tianjin University, 2020, 26(2): 127-134. |
74 | Cheng X B, Peng H J, Huang J Q, et al. Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium-sulfur batteries[J]. ACS Nano, 2015, 9(6): 6373-6382. |
75 | Mao H, Yu W, Cai Z Y, et al. Current-density regulating lithium metal directional deposition for long cycle-life Li metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(35): 19306-19313. |
76 | Hong B, Fan H L, Cheng X B, et al. Spatially uniform deposition of lithium metal in 3D Janus hosts[J]. Energy Storage Materials, 2019, 16: 259-266. |
77 | Chen X R, Li B Q, Zhu C, et al. A coaxial-interweaved hybrid lithium metal anode for long-lifespan lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(39): 1901932. |
78 | Wang J Y, Cui Y, Wang D. Design of hollow nanostructures for energy storage, conversion and production[J]. Advanced Materials, 2019, 31(38): 1801993. |
79 | Xie H Y, Hao Q, Jin H C, et al. Redistribution of Li-ions using covalent organic frameworks towards dendrite-free lithium anodes: a mechanism based on a Galton Board[J]. Science China Chemistry, 2020, 63(9): 1306-1314. |
80 | Shi H D, Qin J Q, Huang K, et al. A two-dimensional mesoporous polypyrrole-graphene oxide heterostructure as a dual-functional ion redistributor for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition, 2020, 59(29): 12147-12153. |
81 | Liu J, Yuan H, Tao X Y, et al. Recent progress on biomass-derived ecomaterials toward advanced rechargeable lithium batteries[J]. EcoMat, 2020, 2(1): e12019. |
82 | Du Y, Gao X, Li S W, et al. Recent advances in metal-organic frameworks for lithium metal anode protection[J]. Chinese Chemical Letters, 2020, 31(3): 609-616. |
83 | Liu J, Yuan H, Cheng X B, et al. A review of naturally derived nanostructured materials for safe lithium metal batteries[J]. Materials Today Nano, 2019, 8: 100049. |
84 | Chen L, Fan X L, Ji X, et al. High-energy Li metal battery with lithiated host[J]. Joule, 2019, 3(3): 732-744. |
85 | Lin D, Zhao J, Sun J, et al. Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(18): 4613-4618. |
86 | Cheng X B, Peng H J, Huang J Q, et al. Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries[J]. Small, 2014, 10(21): 4257-4263. |
87 | Liu L, Yin Y X, Li J Y, et al. Ladderlike carbon nanoarrays on 3D conducting skeletons enable uniform lithium nucleation for stable lithium metal anodes[J]. Chemical Communications, 2018, 54(42): 5330-5333. |
88 | Lu S T, Wang Z D, Yan H, et al. High rate and cycling stable Li metal anodes enabled with aluminum-zinc oxides modified copper foam[J]. Journal of Energy Chemistry, 2020, 41: 87-92. |
89 | He D Q, Liao Y Q, Cheng Z X, et al. Facile one-step vulcanization of copper foil towards stable Li metal anode[J]. Science China Materials, 2020, 63(9): 1663-1671. |
90 | Gu Y, Xu H Y, Zhang X G, et al. Lithiophilic faceted Cu(100) surfaces: high utilization of host surface and cavities for lithium metal anodes[J]. Angewandte Chemie International Edition, 2019, 58(10): 3092-3096. |
91 | Cheng X B, Hou T Z, Zhang R, et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries[J]. Advanced Materials, 2016, 28(15): 2888-2895. |
92 | Zhang W, Zhuang H L, Fan L, et al. A“cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries[J]. Science Advances, 2018, 4(2): eaar4410. |
93 | Chen X, Chen X R, Hou T Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Science Advances, 2019, 5(2): eaau7728. |
94 | Li B Q, Chen X R, Chen X, et al. Favorable lithium nucleation on lithiophilic framework porphyrin for dendrite-free lithium metal anodes[J]. Research, 2019, 2019: 4608940. |
95 | Zhang R, Cheng X B, Zhao C Z, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth[J]. Advanced Materials, 2016, 28(11): 2155-2162. |
96 | Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule, 2018, 2(4): 764-777. |
97 | Zhang R, Chen X R, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition, 2017, 56(27): 7764-7768. |
98 | Song Y W, Shi P, Li B Q, et al. Covalent organic frameworks construct precise lithiophilic sites for uniform lithium deposition[J]. Matter, 2021, 4(1): 253-264. |
99 | Chen X, Bai Y K, Shen X, et al. Sodiophilicity/potassiophilicity chemistry in sodium/potassium metal anodes[J]. Journal of Energy Chemistry, 2020, 51: 1-6. |
100 | Chen X R, Chen X, Yan C, et al. Role of lithiophilic metal sites in lithium metal anodes[J]. Energy & Fuels, 2021, 35(15): 12746-12752. |
101 | Wang S H, Yin Y X, Zuo T T, et al. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels[J]. Advanced Materials, 2017, 29(40): 1703729. |
102 | Xie J, Wang J Y, Lee H R, et al. Engineering stable interfaces for three-dimensional lithium metal anodes[J]. Science Advances, 2018, 4(7): eaat5168. |
103 | Wang C W, Gong Y H, Liu B Y, et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes[J]. Nano Letters, 2017, 17(1): 565-571. |
104 | Zhang Y, Luo W, Wang C W, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode[J]. PNAS, 2017, 114(14): 3584-3589. |
105 | Li T, Shi P, Zhang R, et al. Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior[J]. Nano Research, 2019, 12(9): 2224-2229. |
106 | Shen X, Cheng X B, Shi P, et al. Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries[J]. Journal of Energy Chemistry, 2019, 37: 29-34. |
107 | Yang C P, Xie H, Ping W W, et al. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries[J]. Advanced Materials, 2019, 31(3): 1804815. |
108 | Ye H, Zheng Z J, Yao H R, et al. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries[J]. Angewandte Chemie International Edition, 2019, 58(4): 1094-1099. |
109 | Zeng S B, Arumugam G M, Li W T, et al. Robust interface layers with redox shuttle reactions suppress the dendrite growth for stable solid-state Li metal batteries[J]. Journal of Energy Chemistry, 2020, 51: 222-229. |
110 | Wu K, Zhao B L, Yang C K, et al. ZnCo2O4/ZnO induced lithium deposition in multi-scaled carbon/nickel frameworks for dendrite-free lithium metal anode[J]. Journal of Energy Chemistry, 2020, 43: 16-23. |
111 | 王成林, 屈思吉, 李晶泽. 锂合金薄膜层保护金属锂负极的机理[J]. 储能科学与技术, 2020, 9(2): 368-374. |
Wang C L, Qu S J, Li J Z. Protective mechanism of the Li alloy film-buffered Li metal anode[J]. Energy Storage Science and Technology, 2020, 9(2): 368-374. | |
112 | Liu H, Cheng X B, Huang J Q, et al. Alloy anodes for rechargeable alkali-metal batteries: progress and challenge[J]. ACS Materials Letters, 2019, 1(2): 217-229. |
113 | Liang X, Pang Q, Kochetkov I R, et al. A facile surface chemistry route to a stabilized lithium metal anode[J]. Nature Energy, 2017, 2(9): 1-7. |
114 | Guo F H, Wu C, Chen H, et al. Dendrite-free lithium deposition by coating a lithiophilic heterogeneous metal layer on lithium metal anode[J]. Energy Storage Materials, 2020, 24: 635-643. |
115 | Chang J, Shang J, Sun Y M, et al. Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium[J]. Nature Communications, 2018, 9: 4480. |
116 | Liu K, Kong B, Liu W, et al. Stretchable lithium metal anode with improved mechanical and electrochemical cycling stability[J]. Joule, 2018, 2(9): 1857-1865. |
117 | Li T, Liu H, Shi P, et al. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries[J]. Rare Metals, 2018, 37(6): 449-458. |
118 | Wang S J, Xiong P, Zhang J Q, et al. Recent progress on flexible lithium metal batteries: composite lithium metal anodes and solid-state electrolytes[J]. Energy Storage Materials, 2020, 29: 310-331. |
119 | Zhan Y X, Shi P, Zhang R, et al. Deciphering the effect of electrical conductivity of hosts on lithium deposition in composite lithium metal anodes[J]. Advanced Energy Materials, 2021, 11(37): 2101654. |
120 | Fan L, Li S Y, Liu L, et al. Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase[J]. Advanced Energy Materials, 2018, 8(33): 1802350. |
121 | Yang C P, Zhang L, Liu B Y, et al. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework[J]. PNAS, 2018, 115(15): 3770-3775. |
122 | Wang H S, Lin D C, Xie J, et al. An interconnected channel-like framework as host for lithium metal composite anodes[J]. Advanced Energy Materials, 2019, 9(7): 1802720. |
123 | Zhang R, Li N W, Cheng X B, et al. Advanced micro/nanostructures for lithium metal anodes[J]. Advanced Science, 2017, 4(3): 1600445. |
124 | Zhan Y, Shi P, Zhang X, et al. Recent progress of lithiophilic host for lithium metal anode[J]. Chemical Journal of Chinese Universities, 2021, 42: 1569-1580. |
125 | Kong L, Tang C, Peng H J, et al. Advanced energy materials for flexible batteries in energy storage: a review[J]. SmartMat, 2020, 1(1): e1007. |
126 | Zhang X Q, Cheng X B, Zhang Q. Advances in interfaces between Li metal anode and electrolyte[J]. Advanced Materials Interfaces, 2018, 5(2): 1701097. |
127 | Wang X S, Mai W C, Guan X C, et al. Recent advances of electroplating additives enabling lithium metal anodes to applicable battery techniques[J]. Energy & Environmental Materials, 2021, 4(3): 284-292. |
128 | Ding J F, Xu R, Yan C, et al. A review on the failure and regulation of solid electrolyte interphase in lithium batteries[J]. Journal of Energy Chemistry, 2021, 59: 306-319. |
129 | Yang H C, Li J, Sun Z H, et al. Reliable liquid electrolytes for lithium metal batteries[J]. Energy Storage Materials, 2020, 30: 113-129. |
130 | Chen W J, Li B Q, Zhao C X, et al. Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes[J]. Angewandte Chemie International Edition, 2020, 59(27): 10732-10745. |
131 | 冯建文, 胡时光, 韩兵, 等. 锂金属电池电解液组分调控的研究进展[J]. 储能科学与技术, 2020, 9(6): 1629-1640. |
Feng J W, Hu S G, Han B, et al. Research progress of electrolyte optimization for lithium metal batteries[J]. Energy Storage Science and Technology, 2020, 9(6): 1629-1640. | |
132 | Jiao S H, Ren X D, Cao R G, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3(9): 739-746. |
133 | Li X, Zheng J M, Ren X D, et al. Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives[J]. Advanced Energy Materials, 2018, 8(15): 1703022. |
134 | Wang Z X, Sun C G, Shi Y, et al. A salt-derived solid electrolyte interphase by electroreduction of water-in-salt electrolyte for uniform lithium deposition[J]. Journal of Power Sources, 2019, 439: 227073. |
135 | Li F, He J, Liu J D, et al. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(12): 6600-6608. |
136 | Zhang X Q, Li T, Li B Q, et al. A sustainable solid electrolyte interphase for high-energy-density lithium metal batteries under practical conditions[J]. Angewandte Chemie International Edition, 2020, 59(8): 3252-3257. |
137 | Li S Y, Zhang W D, Wu Q, et al. Synergistic dual-additive electrolyte enables practical lithium-metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(35): 14935-14941. |
138 | Jie Y L, Liu X J, Lei Z W, et al. Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte[J]. Angewandte Chemie International Edition, 2020, 59(9): 3505-3510. |
139 | Hou L P, Zhang X Q, Li B Q, et al. Cycling a lithium metal anode at 90℃ in a liquid electrolyte[J]. Angewandte Chemie International Edition, 2020, 59(35): 15109-15113. |
140 | Chen W J, Zhao C X, Li B Q, et al. A mixed ether electrolyte for lithium metal anode protection in working lithium-sulfur batteries[J]. Energy & Environmental Materials, 2020, 3(2): 160-165. |
141 | Zhang X Q, Zhao C Z, Huang J Q, et al. Recent advances in energy chemical engineering of next-generation lithium batteries[J]. Engineering, 2018, 4(6): 831-847. |
142 | Zhang X Q, Chen X, Xu R, et al. Columnar lithium metal anodes[J]. Angewandte Chemie International Edition, 2017, 56(45): 14207-14211. |
143 | Fan X L, Chen L, Ji X, et al. Highly fluorinated interphases enable high-voltage Li-metal batteries[J]. Chem, 2018, 4(1): 174-185. |
144 | Ren X D, Zou L F, Jiao S H, et al. High-concentration ether electrolytes for stable high-voltage lithium metal batteries[J]. ACS Energy Letters, 2019, 4(4): 896-902. |
145 | Zhu G L, Zhao C Z, Yuan H, et al. Liquid phase therapy with localized high-concentration electrolytes for solid-state Li metal pouch cells[J]. Acta Physico Chimica Sinica, 2020: 2005003. |
146 | Chen S R, Zheng J M, Mei D H, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Advanced Materials, 2018, 30(21): 1706102. |
147 | Yamada Y, Wang J H, Ko S, et al. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nature Energy, 2019, 4(4): 269-280. |
148 | Yan C, Yao Y X, Chen X, et al. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries[J]. Angewandte Chemie International Edition, 2018, 57(43): 14055-14059. |
149 | Liu Y Y, Lin D C, Li Y Z, et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode[J]. Nature Communications, 2018, 9: 3656. |
150 | Fu J L, Ji X, Chen J, et al. Lithium nitrate regulated sulfone electrolytes for lithium metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(49): 22194-22201. |
151 | Zheng J M, Engelhard M H, Mei D H, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017, 2(3): 1-8. |
152 | Cheng X B, Yan C, Chen X, et al. Implantable solid electrolyte interphase in lithium-metal batteries[J]. Chem, 2017, 2(2): 258-270. |
153 | Cheng X B, Yan C, Peng H J, et al. Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes[J]. Energy Storage Materials, 2018, 10: 199-205. |
154 | Wei J Y, Zhang X Q, Hou L P, et al. Shielding polysulfide intermediates by an organosulfur-containing solid electrolyte interphase on the lithium anode in lithium-sulfur batteries[J]. Advanced Materials, 2020, 32(37): 2003012. |
155 | Chen J X, Zhang X Q, Li B Q, et al. The origin of sulfuryl-containing components in SEI from sulfate additives for stable cycling of ultrathin lithium metal anodes[J]. Journal of Energy Chemistry, 2020, 47: 128-131. |
156 | Zhang X Q, Chen X, Cheng X B, et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angewandte Chemie International Edition, 2018, 57(19): 5301-5305. |
157 | Zhang X Q, Cheng X B, Chen X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials, 2017, 27(10): 1605989. |
158 | Zhang M S, Liu R J, Wang Z K, et al. Electrolyte additive maintains high performance for dendrite-free lithium metal anode[J]. Chinese Chemical Letters, 2020, 31(5): 1217-1220. |
159 | Ren X D, Zhang Y H, Engelhard M H, et al. Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives[J]. ACS Energy Letters, 2018, 3(1): 14-19. |
160 | Li N W, Yin Y X, Li J Y, et al. Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable Li plating/stripping[J]. Advanced Science, 2017, 4(2): 1600400. |
161 | Qi S H, Wang H P, He J, et al. Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries[J]. Science Bulletin, 2021, 66(7): 685-693. |
162 | Xu H W, He Y, Zhang Z B, et al. Slurry-like hybrid electrolyte with high lithium-ion transference number for dendrite-free lithium metal anode[J]. Journal of Energy Chemistry, 2020, 48: 375-382. |
163 | Liu J R, Wang Y L, Liu F M, et al. Improving metallic lithium anode with NaPF6 additive in LiPF6-carbonate electrolyte[J]. Journal of Energy Chemistry, 2020, 42: 1-4. |
164 | Manthiram A, Yu X W, Wang S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2: 16103. |
165 | Zhao Q, Stalin S, Zhao C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252. |
166 | Lu Y, Zhao C Z, Yuan H, et al. Critical current density in solid-state lithium metal batteries: mechanism, influences, and strategies[J]. Advanced Functional Materials, 2021, 31(18): 2009925. |
167 | Liu J, Yuan H, Liu H, et al. Unlocking the failure mechanism of solid state lithium metal batteries[J]. Advanced Energy Materials, 2021: 2100748. |
168 | 南皓雄, 赵辰孜, 袁洪, 等. 固态金属锂电池研究进展:外部压力和内部应力的影响[J]. 化工学报, 2021, 72(1): 61-70. |
Nan H X, Zhao C Z, Yuan H, et al. Recent advances in solid-state lithium metal batteries: the role of external pressure and internal stress[J]. CIESC Journal, 2021, 72(1): 61-70. | |
169 | Zhao C Z, Chen P Y, Zhang R, et al. An ion redistributor for dendrite-free lithium metal anodes[J]. Science Advances, 2018, 4(11): eaat3446. |
170 | Han F D, Yue J, Chen C, et al. Interphase engineering enabled all-ceramic lithium battery[J]. Joule, 2018, 2(3): 497-508. |
171 | Gao J, Shao Q J, Chen J. Lithiated Nafion-garnet ceramic composite electrolyte membrane for solid-state lithium metal battery[J]. Journal of Energy Chemistry, 2020, 46: 237-247. |
172 | Ding J F, Xu R, Yan C, et al. Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries[J]. Chinese Chemical Letters, 2020, 31(9): 2339-2342. |
173 | Li P L, Dong X L, Li C, et al. Anchoring an artificial solid-electrolyte interphase layer on a 3D current collector for high-performance lithium anodes[J]. Angewandte Chemie International Edition, 2019, 58(7): 2093-2097. |
174 | Han F D, Zhu Y Z, He X F, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Advanced Energy Materials, 2016, 6(8): 1501590. |
175 | Yao X Y, Huang N, Han F D, et al. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes[J]. Advanced Energy Materials, 2017, 7(17): 1602923. |
176 | Yao X Y, Liu D, Wang C S, et al. High-energy all-solid-state lithium batteries with ultralong cycle life[J]. Nano Letters, 2016, 16(11): 7148-7154. |
177 | Wang X L, Xiao R J, Li H, et al. Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in β-Li3PS4 electrolyte[J]. Physical Chemistry Chemical Physics, 2016, 18(31): 21269-21277. |
178 | 吴敬华, 姚霞银. 基于硫化物固体电解质全固态锂电池界面特性研究进展[J]. 储能科学与技术, 2020, 9(2): 501-514. |
Wu J H, Yao X Y. Recent progress in interfaces of all-solid-state lithium batteries based on sulfide electrolytes[J]. Energy Storage Science and Technology, 2020, 9(2): 501-514. | |
179 | Zhao C Z, Zhang X Q, Cheng X B, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes[J]. PNAS, 2017, 114(42): 11069-11074. |
180 | Wan J Y, Xie J, Kong X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nature Nanotechnology, 2019, 14(7): 705-711. |
181 | Shen Y Q, Zeng F L, Zhou X Y, et al. A novel permselective organo-polysulfides/PVDF gel polymer electrolyte enables stable lithium anode for lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2020, 48: 267-276. |
182 | Jaumaux P, Liu Q, Zhou D, et al. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(23): 9134-9142. |
183 | Fan W, Li N W, Zhang X L, et al. A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries[J]. Advanced Science, 2018, 5(9): 1800559. |
184 | Liu F Q, Wang W P, Yin Y X, et al. Upgrading traditional liquid electrolyte viain situ gelation for future lithium metal batteries[J]. Science Advances, 2018, 4(10): eaat5383. |
185 | Zeng X X, Yin Y X, Shi Y, et al. Lithiation-derived repellent toward lithium anode safeguard in quasi-solid batteries[J]. Chem, 2018, 4(2): 298-307. |
186 | Lu Y, Huang X, Song Z, et al. Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces[J]. Energy Storage Materials, 2018, 15: 282-290. |
187 | Xu S M, Duan H, Shi J L, et al. In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes[J]. Nano Research, 2020, 13(2): 430-436. |
188 | Yan C, Jiang L L, Yao Y X, et al. Nucleation and growth mechanism of anion-derived solid electrolyte interphase in rechargeable batteries[J]. Angewandte Chemie International Edition, 2021, 60(15): 8521-8525. |
189 | Ding J F, Xu R, Yao N, et al. Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(20): 11442-11447. |
190 | Zhang Q K, Liu S, Lu Y T, et al. Artificial interphases enable dendrite-free Li-metal anodes[J]. Journal of Energy Chemistry, 2021, 58: 198-206. |
191 | Xu X Q, Xu R, Cheng X B, et al. A two-dimension laminar composite protective layer for dendrite-free lithium metal anode[J]. Journal of Energy Chemistry, 2021, 56: 391-394. |
192 | Yao Y X, Zhang X Q, Li B Q, et al. A compact inorganic layer for robust anode protection in lithium-sulfur batteries[J]. InfoMat, 2020, 2(2): 379-388. |
193 | Yang Q L, Li W L, Dong C, et al. PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries[J]. Journal of Energy Chemistry, 2020, 42: 83-90. |
194 | Wang H T, Tang Y B. Artificial solid electrolyte interphase acting as“armor”to protect the anode materials for high-performance lithium-ion battery[J]. Chemical Research in Chinese Universities, 2020, 36(3): 402-409. |
195 | Tu Y R, Ma Q T, Wang A X, et al. Skin care design for lithium metal protection with cosmetics introduction[J]. Journal of Energy Chemistry, 2020, 48: 383-389. |
196 | Liang Y R, Xiao Y, Yan C, et al. A bifunctional ethylene-vinyl acetate copolymer protective layer for dendrites-free lithium metal anodes[J]. Journal of Energy Chemistry, 2020, 48: 203-207. |
197 | Zhao C Z, Duan H, Huang J Q, et al. Designing solid-state interfaces on lithium-metal anodes: a review[J]. Science China Chemistry, 2019, 62(10): 1286-1299. |
198 | Gao Z G, Zhang S J, Huang Z G, et al. Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries[J]. Chinese Chemical Letters, 2019, 30(2): 525-528. |
199 | Pang Q, Liang X, Kochetkov I R, et al. Stabilizing lithium plating by a biphasic surface layer formed in situ[J]. Angewandte Chemie International Edition, 2018, 57(31): 9795-9798. |
200 | Xu R, Cheng X B, Yan C, et al. Artificial interphases for highly stable lithium metal anode[J]. Matter, 2019, 1(2): 317-344. |
201 | Xu R, Yan C, Huang J Q. Competitive solid-electrolyte interphase formation on working lithium anodes[J]. Trends in Chemistry, 2021, 3(1): 5-14. |
202 | Xiao Y, Xu R, Yan C, et al. Waterproof lithium metal anode enabled by cross-linking encapsulation[J]. Science Bulletin, 2020, 65(11): 909-916. |
203 | Liu J, Xu R, Yan C, et al. In situ regulated solid electrolyte interphase via reactive separators for highly efficient lithium metal batteries[J]. Energy Storage Materials, 2020, 30: 27-33. |
204 | Xu R, Zhang X Q, Cheng X B, et al. Artificial soft-rigid protective layer for dendrite-free lithium metal anode[J]. Advanced Functional Materials, 2018, 28(8): 1705838. |
205 | Zheng G Y, Lee S W, Liang Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes[J]. Nature Nanotechnology, 2014, 9(8): 618-623. |
206 | Li N W, Shi Y, Yin Y X, et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes[J]. Angewandte Chemie International Edition, 2018, 57(6): 1505-1509. |
207 | Kim M S, Ryu J H, Deepika, et al. Langmuir-Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries[J]. Nature Energy, 2018, 3(10): 889-898. |
[1] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[2] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[3] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[4] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[5] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[6] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[7] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[8] | 郭旭, 张永政, 夏厚兵, 杨娜, 朱真珍, 齐晶瑶. 碳基材料电氧化去除水体污染物的研究进展[J]. 化工学报, 2023, 74(5): 1862-1874. |
[9] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
[10] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[11] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[12] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
[13] | 程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
[14] | 杜江龙, 杨雯棋, 黄凯, 练成, 刘洪来. 复合相变材料/空冷复合式锂离子电池模块散热性能[J]. 化工学报, 2023, 74(2): 674-689. |
[15] | 宋悦, 张启成, 彭文朝, 李阳, 张凤宝, 范晓彬. MoS2基单原子催化剂的合成及其在电催化中的应用[J]. 化工学报, 2023, 74(2): 535-545. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||