1 |
Lawrance G A. Introduction to Coordination Chemistry[M]. Chichester, UK: John Wiley & Sons, 2010.
|
2 |
Martell A E, Motekaitis R J, Chen D, et al. Selection of new Fe(Ⅲ)/Fe(Ⅱ) chelating agents as catalysts for the oxidation of hydrogen sulfide to sulfur by air[J]. Canadian Journal of Chemistry, 1996, 74(10): 1872-1879.
|
3 |
Kuźnik N, Wyskocka M. Iron(Ⅲ) contrast agent candidates for MRI: a survey of the structure-effect relationship in the last 15 years of studies[J]. European Journal of Inorganic Chemistry, 2016, 2016(4): 445-458.
|
4 |
Checa-Fernandez A, Santos A, Romero A, et al. Application of chelating agents to enhance Fenton process in soil remediation: a review[J]. Catalysts, 2021, 11(6): 722.
|
5 |
Wilson A M, Bailey P J, Tasker P A, et al. Solvent extraction: the coordination chemistry behind extractive metallurgy[J]. Chemical Society Reviews, 2014, 43(1): 123-134.
|
6 |
Gaur K, Pérez Otero S C, Benjamín-Rivera J A, et al. Iron chelator transmetalative approach to inhibit human ribonucleotide reductase[J]. Journal of the American Chemistry Society Au, 2021, 1(6): 865-878.
|
7 |
Sheikh T A, Arshad M N, Rahman M M, et al. Trace electrochemical detection of Ni2+ ions with bidentate N,N'(ethane-1,2-diyl)bis(3,4-dimethoxybenzenesulfonamide)[EDBDMBS] as a chelating agent[J]. Inorganica Chimica Acta, 2017, 464: 157-166.
|
8 |
Solov'ev V, Marcou G, Tsivadze A, et al. Complexation of Mn2+, Fe2+, Y3+, La3+, Pb2+, and UO2 2+ with organic ligands: QSPR ensemble modeling of stability constants[J]. Industrial & Engineering Chemistry Research, 2012, 51(41): 13482-13489.
|
9 |
Solov'ev V P, Varnek A, Wipff G. Modeling of ion complexation and extraction using substructural molecular fragments[J]. Journal of Chemical Information and Computer Sciences, 2000, 40(3): 847-858.
|
10 |
Solov'ev V, Sukhno I, Buzko V, et al. Stability constants of complexes of Zn2+, Cd2+, and Hg2+ with organic ligands: QSPR consensus modeling and design of new metal binders[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 72(3/4): 309-321.
|
11 |
Solov'ev V P, Tsivadze A Y, Varnek A A. New approach for accurate QSPR modeling of metal complexation: application to stability constants of complexes of lanthanide ions Ln3+, Ag+, Zn2+, Cd2+ and Hg2+ with organic ligands in water[J]. Macroheterocycles, 2012, 5(4/5): 404-410.
|
12 |
Solov'ev V P, Kireeva N, Tsivadze A Y, et al. QSPR ensemble modelling of alkaline-earth metal complexation[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 76(1/2): 159-171.
|
13 |
Varnek A, Solov’ev V. Quantitative structure-property relationships in solvent extraction and complexation of metals[M]//Ion Exchange and Solvent Extraction Series. Florida, USA: CRC Press, 2009: 319-358.
|
14 |
Solov'ev V, Varnek A, Tsivadze A. QSPR ensemble modelling of the 1∶1 and 1∶2 complexation of Co²⁺, Ni²⁺, and Cu²⁺ with organic ligands: relationships between stability constants[J]. Journal of Computer-Aided Molecular Design, 2014, 28(5): 549-564.
|
15 |
Solov'ev V, Kireeva N, Ovchinnikova S, et al. The complexation of metal ions with various organic ligands in water: prediction of stability constants by QSPR ensemble modelling[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 83(1/2): 89-101.
|
16 |
Mitrofanov A A, Matveev P I, Yakubova K V, et al. Deep learning insights into lanthanides complexation chemistry[J]. Molecules (Basel, Switzerland), 2021, 26(11): 3237.
|
17 |
肖琰, 曹晨忠. 过渡金属-二芳基希夫碱配位稳定常数的QSPR研究[J]. 化学研究与应用, 2020, 32(5): 782-788.
|
|
Xiao Y, Cao C Z. QSPR study of the stability constant of the complexes involving bi-aryl Schiff bases reacting with transition metals[J]. Chemical Research and Application, 2020, 32(5): 782-788.
|
18 |
Chaube S, Srinivasan S G, Rai B. Applied machine learning for predicting the lanthanide-ligand binding affinities[J]. Scientific Reports, 2020, 10: 14322.
|
19 |
Velickovic P, Cucurull G, Casanova A, et al. Graph attention networks[EB/OL]. 2018. .
|
20 |
梁春余, 杨家振, 刘祁涛. 支持电解质和离子强度对溶液中配合物稳定性的影响(Ⅲ): Pitzer理论在确定配合物热力学稳定常数中的应用[J]. 化学学报, 1986, 44(3): 213-219.
|
|
Liang C Y, Yang J Z, Liu Q T. The influence of ionic strength and supporting electrolytes on the stability of complexes in solutions(Ⅲ): The application of Pitzer's equation to determine the thermodynamic stability constant of complexes[J]. Acta Chimica Sinica, 1986, 44(3): 213-219.
|
21 |
Pettit L. The IUPAC stability constants database[J]. Chemistry International, 2006, 28: 14-15.
|
22 |
Wang M Y. Deep graph library: towards efficient and scalable deep learning on graphs[C]//ICLR Workshop on Representation Learning on Graphs and Manifolds. ICLR, 2019.
|
23 |
RDKit: open-source cheminformatics software[CP/OL]. [2020-10-26]. .
|
24 |
Coley C W, Barzilay R, Green W H, et al. Convolutional embedding of attributed molecular graphs for physical property prediction[J]. Journal of Chemical Information and Modeling, 2017, 57(8): 1757-1772.
|
25 |
Imambi S, Prakash K B, Kanagachidambaresan G R. PyTorch[M]//Programming with TensorFlow. Cham: Springer International Publishing, 2021: 87-104.
|
26 |
Abadi M, Barham P, Chen J, et al. TensorFlow: a system for large-scale machine learning[C]//12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). Atlanta, Georgia, USA: USENIX Association, 2016.
|
27 |
Mechachti F, Lakehal S, Lakehal A, et al. Predicted structure and selectivity of 3d transition metal complexes with glutamic N, N-bis(carboxymethyl) acid[J]. New Journal of Chemistry, 2021, 45(39): 18366-18378.
|
28 |
Chauhan G, Stein M, Seidel-Morgenstern A, et al. The thermodynamics and biodegradability of chelating agents upon metal extraction[J]. Chemical Engineering Science, 2015, 137: 768-785.
|
29 |
Ridzwan M H, Yaakob M K, Zabidi Z M, et al. Computational insight into the quantum chemistry, interaction and adsorption energy of aminopolycarboxylic acid chelating agents towards metal cations[J]. Computational and Theoretical Chemistry, 2022, 1208: 113579.
|
30 |
Cassone G, Chillè D, Giacobello F, et al. Interaction between AS(Ⅲ) and simple thioacids in water: an experimental and ab initio molecular dynamics investigation[J]. The Journal of Physical Chemistry B, 2019, 123(28): 6090-6098.
|