1 |
管一泽, 罗安飞, 林安辉. 含重金属电镀废水的主要处理方法[J]. 中外企业家, 2020(8): 230.
|
|
Guan Y Z, Luo A F, Lin A H. Main treatment methods of electroplating wastewater containing heavy metals [J]. Chinese & Foreign Entrepreneurs, 2020(8): 230.
|
2 |
汤雨林, 游少鸿, 兰华春, 等. 氧掺杂g-C3N4光催化降解Cu-EDTA络合物的反应机理研究[J]. 环境科学学报, 2018, 38(10): 3973-3978.
|
|
Tang Y L, You S H, Lan H C, et al. Mechanism study of the photocatlytic decomplexation of Cu-EDTA over oxygen doped g-C3N4 [J]. Acta Scientiae Circumstantiae, 2018, 38(10): 3973-3978.
|
3 |
Wang Z, Li J, Song W, et al. Decomplexation of electroplating wastewater by ozone-based advanced oxidation process[J]. Water Science and Technology, 2019, 79(3): 589-596.
|
4 |
Santoro C, Arbizzani C, Erable B, et al. Microbial fuel cells: from fundamentals to applications. A review[J]. Journal of Power Sources, 2017, 356: 225-244.
|
5 |
Tursun H, Liu R, Li J, et al. Carbon material optimized biocathode for improving microbial fuel cell performance[J]. Frontiers in Microbiology, 2016, 7: 6.
|
6 |
Sun M, Zhai L F, Li W W, et al. Harvest and utilization of chemical energy in wastes by microbial fuel cells[J]. Chemical Society Reviews, 2016, 45(10): 2847-2870.
|
7 |
Mateo S, Cantone A, Cañizares P, et al. On the staking of miniaturized air-breathing microbial fuel cells[J]. Applied Energy, 2018, 232: 1-8.
|
8 |
Jafary T, Rahimnejad M, Ghoreyshi A A, et al. Assessment of bioelectricity production in microbial fuel cells through series and parallel connections[J]. Energy Conversion and Management, 2013, 75: 256-262.
|
9 |
Feng H J, Liang Y X, Guo K, et al. TiO2 nanotube arrays modified titanium: a stable, scalable, and cost-effective bioanode for microbial fuel cells[J]. Environmental Science & Technology Letters, 2016, 3(12): 420-424.
|
10 |
Du J Q, Zhang B G, Li J X, et al. Decontamination of heavy metal complexes by advanced oxidation processes: a review[J]. Chinese Chemical Letters, 2020, 31(10): 2575-2582.
|
11 |
Hou Y, Li X Y, Zhao Q D, et al. Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO2 nanotube array electrode under visible light irradiation[J]. Environmental Science & Technology, 2012, 46(7): 4042-4050.
|
12 |
Nakata K, Fujishima A. TiO2 photocatalysis: design and applications[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 169-189.
|
13 |
朱遂一, 霍明昕, 张蕾蕾, 等. 氟掺杂纳米二氧化钛制备及其光催化性能研究进展[J]. 科技导报, 2010, 28(6): 112-115.
|
|
Zhu S Y, Huo M X, Zhang L L, et al. Preparation and photocatalytic properties of nanometer titania loaded with fluorine: a review[J]. Science & Technology Review, 2010, 28(6): 112-115.
|
14 |
You H, Yao J, Sun L X, et al.Preparation of TiO2-activated carbon complex membranes and their photoelectrocatalytic activity[J].Journal of Harbin Institute of Technology, 2003, 10(1): 104-107
|
15 |
张乐观. 组合光催化技术在水处理中的应用[J]. 化工进展, 2006, 25(9): 1036-1039, 1048.
|
|
Zhang L G. Progress of combination photocatalytic oxidation in wastewater treatment[J]. Chemical Industry and Engineering Progress, 2006, 25(9): 1036-1039, 1048.
|
16 |
李荐, 罗佳, 彭振文, 等. 不同阳极氧化条件下TiO2纳米管阵列的制备及表征[J]. 无机材料学报, 2010, 25(5): 490-494.
|
|
Li J, Luo J, Peng Z W, et al. Preparation and characterization of TiO2 nanotube arrays by anodic oxidation method[J]. Journal of Inorganic Materials, 2010, 25(5): 490-494.
|
17 |
Long X Z, Pan Q R, Wang C Q, et al. Microbial fuel cell-photoelectrocatalytic cell combined system for the removal of azo dye wastewater[J]. Bioresource Technology, 2017, 244: 182-191.
|
18 |
Long X Z, Wang H, Wang C Q, et al. Enhancement of azo dye degradation and power generation in a photoelectrocatalytic microbial fuel cell by simple cathodic reduction on titania nanotube arrays electrode[J]. Journal of Power Sources, 2019, 415: 145-153.
|
19 |
Heng W X, Zhang W, Zhang Q H, et al. Photoelectrocatalytic microfluidic reactors utilizing hierarchical TiO2 nanotubes for determination of chemical oxygen demand[J]. RSC Advances, 2016, 6(55): 49824-49830.
|
20 |
Huang C H, Wang I K, Lin Y M, et al. Visible light photocatalytic degradation of nitric oxides on PtO x -modified TiO2 via sol-gel and impregnation method[J]. Journal of Molecular Catalysis A: Chemical, 2010, 316(1/2): 163-170.
|
21 |
Kazazis D, Guha S, Bojarczuk N A, et al. Substrate Fermi level effects in photocatalysis on oxides: properties of ultrathin TiO2/Si films[J]. Applied Physics Letters, 2009, 95(6): 064103.
|
22 |
Mora-Seró I, Bisquert J. Fermi level of surface states in TiO2 nanoparticles[J]. Nano Letters, 2003, 3(7): 945-949.
|
23 |
Subramanian V, Wolf E E, Kamat P V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration[J]. Journal of the American Chemical Society, 2004, 126(15): 4943-4950.
|
24 |
She X J, Xu H, Li L, et al. Steering charge transfer for boosting photocatalytic H2 evolution: integration of two-dimensional semiconductor superiorities and noble-metal-free Schottky junction effect[J]. Applied Catalysis B: Environmental, 2019, 245: 477-485.
|
25 |
Liang Z, Yan C F, Rtimi S, et al. Piezoelectric materials for catalytic/photocatalytic removal of pollutants: recent advances and outlook[J]. Applied Catalysis B: Environmental, 2019, 241: 256-269.
|
26 |
Zhao X, Guo L B, Zhang B F, et al. Photoelectrocatalytic oxidation of CuII-EDTA at the TiO2 electrode and simultaneous recovery of CuII by electrodeposition[J]. Environmental Science & Technology, 2013, 47(9): 4480-4488.
|
27 |
杨桂蓉, 魏连雨, 李静, 等. Co-BiVO4薄膜电极光电处理Pb/Cu-EDTA研究[J]. 环境科学学报, 2014, 34(4): 914-919.
|
|
Yang G R, Wei L Y, Li J, et al. Photoelectrocatalytic treatment of Pb/Cu-EDTA at Co-BiVO4 film electrode[J]. Acta Scientiae Circumstantiae, 2014, 34(4): 914-919.
|
28 |
Shao H X, Wang Y B, Zeng H B, et al. Enhanced photoelectrocatalytic degradation of bisphenol a by BiVO4 photoanode coupling with peroxymonosulfate[J]. Journal of Hazardous Materials, 2020, 394: 121105.
|
29 |
陈次平, 任新民, 陆道惠, 等. 乙酸钠、草酸钠、酒石酸钾在三氧化钨-水体系中光生自由基的研究[J]. 感光科学与光化学, 1991, 9(4): 299-303.
|
|
Chen C P, Ren X M, Lu D H, et al. Esr study on photogenerated radicals in aqueous dispersions of tungsten oxide containing sodium acetate, sodium oxalate and potassium tartrate[J]. Photographic Science and Photochemistry, 1991, 9(4): 299-303.
|
30 |
Hopanna M, Kelly L, Blaney L. Photochemistry of the organoselenium compound ebselen: direct photolysis and reaction with active intermediates of conventional reactive species sensitizers and quenchers[J]. Environmental Science & Technology, 2020, 54(18): 11271-11281.
|