化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1010-1032.DOI: 10.11949/0438-1157.20221350
王倩1(), 李神勇1,2, 康帅1, 庞薇1, 郝龙龙2, 秦身钧1,2()
收稿日期:
2022-10-12
修回日期:
2023-01-05
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
秦身钧
作者简介:
王倩(1999—),女,硕士研究生,wq312737@163.com
基金资助:
Qian WANG1(), Shenyong LI1,2, Shuai KANG1, Wei PANG1, Longlong HAO2, Shenjun QIN1,2()
Received:
2022-10-12
Revised:
2023-01-05
Online:
2023-03-05
Published:
2023-04-19
Contact:
Shenjun QIN
摘要:
粉煤灰作为典型的大宗固体废弃物,其综合高效利用受到广泛关注。我国粉煤灰排放量巨大,但利用率较低,如何通过减少其对生态环境造成的破坏、对人类健康造成的威胁和提高其经济效益来实现粉煤灰资源化利用是目前研究的热点。粉煤灰的活性大小是提高粉煤灰综合利用率的关键所在,对粉煤灰进行预处理可提高其活性。本文综述了焙烧、研磨、微波、超声波、加压、真空、表面活性剂等预处理技术在粉煤灰分质高效利用工艺中的作用,重点介绍有价元素浸出分离的应用研究。通过比较不同预处理技术的应用范围和效果,指出了各种预处理技术的优缺点,为粉煤灰的有效综合利用提供合适的预处理参考方案。
中图分类号:
王倩, 李神勇, 康帅, 庞薇, 郝龙龙, 秦身钧. 粉煤灰分质高效利用预处理技术的研究进展[J]. 化工学报, 2023, 74(3): 1010-1032.
Qian WANG, Shenyong LI, Shuai KANG, Wei PANG, Longlong HAO, Shenjun QIN. Research progress of pretreatment technology for efficient utilization of coal ash[J]. CIESC Journal, 2023, 74(3): 1010-1032.
来源 | 质量分数/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Al2O3 | SiO2 | Fe2O3 | CaO | MgO | TiO2 | Na2O | K2O | P2O5 | |
山西某电厂[ | 44.12 | 42.17 | 2.43 | 2.44 | 0.68 | 1.67 | 0.14 | — | 0.69 |
淮南平圩电厂[ | 27.62 | 51.49 | 9.25 | 3.19 | 0.58 | 0.8 | 1.31 | 0.148 | |
内蒙古某燃煤电厂循环流化床[ | 50.97 | 34.87 | 1.91 | 2.25 | 0.13 | 2.15 | 0.09 | 0.34 | — |
新疆某电厂[ | 18.20 | 53.26 | 8.48 | 10.92 | 2.48 | — | 2.08 | 1.11 | — |
宁夏某电厂[ | 30.0 | 50.7 | 6.1 | 6.2 | 3.2 | — | — | 2.1 | — |
郑州某电厂[ | 31.15 | 53.97 | 4.16 | — | 1.01 | 2.04 | — | 4.01 | — |
表1 产地不同的几种粉煤灰的化学组成
Table 1 Chemical composition of fly ash of different origin
来源 | 质量分数/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Al2O3 | SiO2 | Fe2O3 | CaO | MgO | TiO2 | Na2O | K2O | P2O5 | |
山西某电厂[ | 44.12 | 42.17 | 2.43 | 2.44 | 0.68 | 1.67 | 0.14 | — | 0.69 |
淮南平圩电厂[ | 27.62 | 51.49 | 9.25 | 3.19 | 0.58 | 0.8 | 1.31 | 0.148 | |
内蒙古某燃煤电厂循环流化床[ | 50.97 | 34.87 | 1.91 | 2.25 | 0.13 | 2.15 | 0.09 | 0.34 | — |
新疆某电厂[ | 18.20 | 53.26 | 8.48 | 10.92 | 2.48 | — | 2.08 | 1.11 | — |
宁夏某电厂[ | 30.0 | 50.7 | 6.1 | 6.2 | 3.2 | — | — | 2.1 | — |
郑州某电厂[ | 31.15 | 53.97 | 4.16 | — | 1.01 | 2.04 | — | 4.01 | — |
方法 | 原料 | 反应装置 | 实验条件 | 浸出率 | 文献 |
---|---|---|---|---|---|
加压酸浸 | 粉煤灰(内蒙古) | 高压反应釜(GS-0.5L) | 酸浸:180℃,4 h,75 μm,50% H2SO4, CFA∶H2SO4=1∶1.2 | Al2O3:82.4% Fe2O3:76.1% | [ |
加压酸浸 | 粉煤灰(山西朔州) | 反应釜 | 酸浸:180℃,4 h,45%(质量) H2SO4 | Al:90% Fe:98% | [ |
高压浸出 | 粉煤灰(神华) | 自制高压釜 | 酸浸:180℃,5 h,30% H2SO4 | Al2O3:93.1% | [ |
加压碱浸 | 粉煤灰 | PF-100M高压反应釜 | 碱浸:95℃,2 h,S/L=1∶2.5,200 g/L NaOH | Si:24.23% | [ |
高压酸浸 | 粉煤灰(山西朔州) | 1L锆质高压反应釜 | 酸浸:230℃,2 h,S/L=1∶10 | Al:89.43% Fe:69.78% | [ |
加压酸浸 | 粉煤灰(内蒙古) | 高压反应釜(GS-1L),2.2 MPa | 酸浸:220℃,180 min,3 mol/L H2SO4,S/L=1∶10 | Al:82.51% | [ |
加压酸浸 | 粉煤灰(内蒙古) | 高压反应釜(GS-1L) | 酸浸:180℃,4 h,50% H2SO4 | Al:82.4% | [ |
加压酸浸 | 煤系列高岭土(湖北宜昌) | 反应釜 | 煅烧:800℃,2 h,20%(质量) H2SO4 | Al:98.7% | [ |
酸浸:200℃,60 min,15%(质量) HCl,S/L=1∶10 |
表2 加压预处理技术在粉煤灰活化中的应用
Table 2 Application of pressure pretreatment technology in activation of fly ash
方法 | 原料 | 反应装置 | 实验条件 | 浸出率 | 文献 |
---|---|---|---|---|---|
加压酸浸 | 粉煤灰(内蒙古) | 高压反应釜(GS-0.5L) | 酸浸:180℃,4 h,75 μm,50% H2SO4, CFA∶H2SO4=1∶1.2 | Al2O3:82.4% Fe2O3:76.1% | [ |
加压酸浸 | 粉煤灰(山西朔州) | 反应釜 | 酸浸:180℃,4 h,45%(质量) H2SO4 | Al:90% Fe:98% | [ |
高压浸出 | 粉煤灰(神华) | 自制高压釜 | 酸浸:180℃,5 h,30% H2SO4 | Al2O3:93.1% | [ |
加压碱浸 | 粉煤灰 | PF-100M高压反应釜 | 碱浸:95℃,2 h,S/L=1∶2.5,200 g/L NaOH | Si:24.23% | [ |
高压酸浸 | 粉煤灰(山西朔州) | 1L锆质高压反应釜 | 酸浸:230℃,2 h,S/L=1∶10 | Al:89.43% Fe:69.78% | [ |
加压酸浸 | 粉煤灰(内蒙古) | 高压反应釜(GS-1L),2.2 MPa | 酸浸:220℃,180 min,3 mol/L H2SO4,S/L=1∶10 | Al:82.51% | [ |
加压酸浸 | 粉煤灰(内蒙古) | 高压反应釜(GS-1L) | 酸浸:180℃,4 h,50% H2SO4 | Al:82.4% | [ |
加压酸浸 | 煤系列高岭土(湖北宜昌) | 反应釜 | 煅烧:800℃,2 h,20%(质量) H2SO4 | Al:98.7% | [ |
酸浸:200℃,60 min,15%(质量) HCl,S/L=1∶10 |
方法 | 原料 | 真空度 | 实验条件 | 浸出率 | 文献 |
---|---|---|---|---|---|
真空还原冶金工艺(VRMP) | 富锗粉煤灰(内蒙古) | 10 Pa | 真空还原:900℃, 10%(质量)焦粉,40 min,L/S=20 | Ge:93.96% | [ |
真空还原氯化蒸馏 | 富锗粉煤灰(内蒙古) | 259.63 Pa | 真空还原:920.53℃,16.64%(质量)还原剂(焦粉); 氯化蒸馏:8 mol/L HCl,S/L=1∶7,8%(质量) MnO2 | Ge:83.48%±0.36% | [ |
焙烧-酸浸 | 粉煤灰(内蒙古) | -0.04 MPa | 焙烧:CFA∶Na2CO3=1∶1 | [ | |
浸出:90℃,60 min,8 mol/L HCl,S/L=1∶9 | |||||
常规加热:900℃,60 min; | Al:93.10% | ||||
真空下常规加热:900℃,20 min; | Al:93.02% | ||||
微波加热:700℃,30 min; | Al:95.96% | ||||
真空下微波加热:700℃,20 min | Al:95.43% | ||||
真空热还原 | 粉煤灰(内蒙古) | 100 Pa | 真空还原:1200℃,6 h | Al2O3:82.61% | [ |
焙烧-酸浸 | 粉煤灰 | -0.04 MPa | 焙烧:HAFA∶Na2CO3=1∶1 | [ | |
常规加热:900℃,60 min; | Al:93% | ||||
真空下常规加热:900℃,20 min; | Al:93% | ||||
微波加热:700℃,30 min; | Al:96% | ||||
真空下微波加热:700℃,20 min | Al:96% |
表3 真空预处理技术在粉煤灰活化中的应用
Table 3 Application of vacuum pretreatment technology in activation of fly ash
方法 | 原料 | 真空度 | 实验条件 | 浸出率 | 文献 |
---|---|---|---|---|---|
真空还原冶金工艺(VRMP) | 富锗粉煤灰(内蒙古) | 10 Pa | 真空还原:900℃, 10%(质量)焦粉,40 min,L/S=20 | Ge:93.96% | [ |
真空还原氯化蒸馏 | 富锗粉煤灰(内蒙古) | 259.63 Pa | 真空还原:920.53℃,16.64%(质量)还原剂(焦粉); 氯化蒸馏:8 mol/L HCl,S/L=1∶7,8%(质量) MnO2 | Ge:83.48%±0.36% | [ |
焙烧-酸浸 | 粉煤灰(内蒙古) | -0.04 MPa | 焙烧:CFA∶Na2CO3=1∶1 | [ | |
浸出:90℃,60 min,8 mol/L HCl,S/L=1∶9 | |||||
常规加热:900℃,60 min; | Al:93.10% | ||||
真空下常规加热:900℃,20 min; | Al:93.02% | ||||
微波加热:700℃,30 min; | Al:95.96% | ||||
真空下微波加热:700℃,20 min | Al:95.43% | ||||
真空热还原 | 粉煤灰(内蒙古) | 100 Pa | 真空还原:1200℃,6 h | Al2O3:82.61% | [ |
焙烧-酸浸 | 粉煤灰 | -0.04 MPa | 焙烧:HAFA∶Na2CO3=1∶1 | [ | |
常规加热:900℃,60 min; | Al:93% | ||||
真空下常规加热:900℃,20 min; | Al:93% | ||||
微波加热:700℃,30 min; | Al:96% | ||||
真空下微波加热:700℃,20 min | Al:96% |
方法 | 原料 | 活化助剂 | 实验条件 | 浸出率 | 文献 |
---|---|---|---|---|---|
焙烧-酸浸 | 粉煤灰(太原) | CFA∶Na2CO3=1∶1 | 焙烧:900℃,2 h; 酸浸:100℃,2 h,20%(质量) HCl,S/L=1∶3 | Al2O3:90% | [ |
焙烧-酸浸 | Shell炉煤气化粉煤灰 | CFA∶Na2CO3=1∶1 | 焙烧:900℃,2 h; 酸浸:w(H2SO4)=35%,95℃,5 h,S/L=1∶3 | Al2O3:95% | [ |
CFA∶NaOH=3∶2 | Al2O3:85% | ||||
CFA∶CaCl2=1∶0.8 | Al2O3:96% | ||||
CFA∶Ca(OH)2=3∶2 | Al2O3:56% | ||||
CFA∶(NH4)2SO4=6∶1 | Al2O3:48% | ||||
CFA∶NaOH∶Na2CO3=3∶2∶1 | Al2O3:98% | ||||
焙烧-酸浸 | 粉煤灰(淮南) | CFA∶Na2CO3=1∶0.9 | 焙烧:875℃,2 h; 酸浸:90℃,2.5 h,3 mol/L H2SO4,S/L=1∶5 | Al2O3:95% | [ |
焙烧-酸浸 | 粉煤灰(太原) | CFA∶Na2CO3=1∶0.8 | 焙烧:850℃,2 h; 酸浸:98℃,2 h,25% H2SO4,S/L=1∶5 | Al2O3:94% | [ |
焙烧-酸浸 | 粉煤灰(山西) | CFA∶Na2CO3=1∶0.85 | 焙烧:880℃,1.5 h; 酸浸:1 h,8 mol/L H2SO4 | Al2O3:69.3% | [ |
焙烧-酸浸 | 粉煤灰(太原) | CFA∶NaOH=1∶1 | 焙烧:600℃,2 h; 酸浸:100℃,2 h,20%(质量) HCl,S/L=1∶3 | Al2O3:60% | [ |
焙烧-酸浸 | 粉煤灰(内蒙古) | CFA∶(NH4)2SO4=1∶4 | 焙烧:380℃,60 min; 酸浸:90℃,60 min,S/L=1∶10,10% H2SO4 | Al:92.65% | [ |
CFA∶Na2CO3=1∶1 | 焙烧:900℃,60 min; 酸浸:95℃,60 min,S/L=1∶20,30% H2SO4 | Al:92.23% | |||
焙烧-酸浸 | 粉煤灰(天津) | CFA∶CaCl2=1∶0.8 | 焙烧:900℃,30 min; 酸浸:常温,30 min,4 mol/L H2SO4 | Al2O3:95% | [ |
焙烧-酸浸 | 粉煤灰(太原) | CFA∶Na2CO3=1∶0.8 | 焙烧:900℃,2 h; 酸浸:100℃,2 h,6 mol/L HCl | Li:81% | [ |
焙烧-水溶 | 粉煤灰(黑龙江) | CFA∶NH4HSO4=1∶8.5 | 焙烧:420℃,60 min; 水溶:90℃,70 min,S/L=1∶8,400 r/min | Al2O3:95.9% | [ |
焙烧-水浸 | 粉煤灰(内蒙古) | Al2O3∶NH4HSO4=1∶8 | 焙烧:400℃,60 min; 浸出:90℃,60 min,S/L=1∶9 | Al:90.95% | [ |
焙烧-水溶 | 粉煤灰(黑龙江) | CFA∶NH4HSO4=1∶8.5 | 焙烧:420℃,60 min; 水溶:90℃,50 min,S/L=1∶8,500 r/min | Al2O3:84.5% | [ |
焙烧-酸浸 | 粉煤灰(伊朗) | CFA∶Na2CO3=1∶0.5 | 焙烧:850℃,2 h; 酸浸:0.5 mol/L柠檬酸,60 min,30℃ | Ge:98.15% V:75.31% Li:97.30% | [ |
碱熔-酸浸 | 粉煤灰(贵州) | CFA∶Na2CO3=1∶1 | 焙烧:860℃,0.5h; 酸浸:2 h,400 r/min,3 mol/L HCl,S/L=1∶20 | REE:23% REE:72.78% | [ |
焙烧-酸浸 | 粉煤灰(淮南) | CFA∶Na2CO3=1∶0.9 | 焙烧:875℃,2 h; 酸浸:90℃,2 h,3 mol/L H2SO4,S/L=1∶4 | Al2O3:95% | [ |
焙烧-酸浸 | 粉煤灰(山西) | CFA∶K2CO3∶Na2CO3= 1∶0.5∶1.5 | 焙烧:950℃,2 h; 酸浸:60℃,2 h,3 mol/L HCl,S/L=1∶10 | Ga:93.43% | [ |
焙烧-酸浸 | 粉煤灰(内蒙古) | CFA∶NaF=1∶0.75 | 焙烧:800℃,10 min; 酸浸:1200℃,1 h,2 mol/L HNO3,S/L=1∶10 | Ga:94% | [ |
表4 焙烧预处理技术在粉煤灰活化中的应用
Table 4 Application of roasting pretreatment technology in activation of fly ash
方法 | 原料 | 活化助剂 | 实验条件 | 浸出率 | 文献 |
---|---|---|---|---|---|
焙烧-酸浸 | 粉煤灰(太原) | CFA∶Na2CO3=1∶1 | 焙烧:900℃,2 h; 酸浸:100℃,2 h,20%(质量) HCl,S/L=1∶3 | Al2O3:90% | [ |
焙烧-酸浸 | Shell炉煤气化粉煤灰 | CFA∶Na2CO3=1∶1 | 焙烧:900℃,2 h; 酸浸:w(H2SO4)=35%,95℃,5 h,S/L=1∶3 | Al2O3:95% | [ |
CFA∶NaOH=3∶2 | Al2O3:85% | ||||
CFA∶CaCl2=1∶0.8 | Al2O3:96% | ||||
CFA∶Ca(OH)2=3∶2 | Al2O3:56% | ||||
CFA∶(NH4)2SO4=6∶1 | Al2O3:48% | ||||
CFA∶NaOH∶Na2CO3=3∶2∶1 | Al2O3:98% | ||||
焙烧-酸浸 | 粉煤灰(淮南) | CFA∶Na2CO3=1∶0.9 | 焙烧:875℃,2 h; 酸浸:90℃,2.5 h,3 mol/L H2SO4,S/L=1∶5 | Al2O3:95% | [ |
焙烧-酸浸 | 粉煤灰(太原) | CFA∶Na2CO3=1∶0.8 | 焙烧:850℃,2 h; 酸浸:98℃,2 h,25% H2SO4,S/L=1∶5 | Al2O3:94% | [ |
焙烧-酸浸 | 粉煤灰(山西) | CFA∶Na2CO3=1∶0.85 | 焙烧:880℃,1.5 h; 酸浸:1 h,8 mol/L H2SO4 | Al2O3:69.3% | [ |
焙烧-酸浸 | 粉煤灰(太原) | CFA∶NaOH=1∶1 | 焙烧:600℃,2 h; 酸浸:100℃,2 h,20%(质量) HCl,S/L=1∶3 | Al2O3:60% | [ |
焙烧-酸浸 | 粉煤灰(内蒙古) | CFA∶(NH4)2SO4=1∶4 | 焙烧:380℃,60 min; 酸浸:90℃,60 min,S/L=1∶10,10% H2SO4 | Al:92.65% | [ |
CFA∶Na2CO3=1∶1 | 焙烧:900℃,60 min; 酸浸:95℃,60 min,S/L=1∶20,30% H2SO4 | Al:92.23% | |||
焙烧-酸浸 | 粉煤灰(天津) | CFA∶CaCl2=1∶0.8 | 焙烧:900℃,30 min; 酸浸:常温,30 min,4 mol/L H2SO4 | Al2O3:95% | [ |
焙烧-酸浸 | 粉煤灰(太原) | CFA∶Na2CO3=1∶0.8 | 焙烧:900℃,2 h; 酸浸:100℃,2 h,6 mol/L HCl | Li:81% | [ |
焙烧-水溶 | 粉煤灰(黑龙江) | CFA∶NH4HSO4=1∶8.5 | 焙烧:420℃,60 min; 水溶:90℃,70 min,S/L=1∶8,400 r/min | Al2O3:95.9% | [ |
焙烧-水浸 | 粉煤灰(内蒙古) | Al2O3∶NH4HSO4=1∶8 | 焙烧:400℃,60 min; 浸出:90℃,60 min,S/L=1∶9 | Al:90.95% | [ |
焙烧-水溶 | 粉煤灰(黑龙江) | CFA∶NH4HSO4=1∶8.5 | 焙烧:420℃,60 min; 水溶:90℃,50 min,S/L=1∶8,500 r/min | Al2O3:84.5% | [ |
焙烧-酸浸 | 粉煤灰(伊朗) | CFA∶Na2CO3=1∶0.5 | 焙烧:850℃,2 h; 酸浸:0.5 mol/L柠檬酸,60 min,30℃ | Ge:98.15% V:75.31% Li:97.30% | [ |
碱熔-酸浸 | 粉煤灰(贵州) | CFA∶Na2CO3=1∶1 | 焙烧:860℃,0.5h; 酸浸:2 h,400 r/min,3 mol/L HCl,S/L=1∶20 | REE:23% REE:72.78% | [ |
焙烧-酸浸 | 粉煤灰(淮南) | CFA∶Na2CO3=1∶0.9 | 焙烧:875℃,2 h; 酸浸:90℃,2 h,3 mol/L H2SO4,S/L=1∶4 | Al2O3:95% | [ |
焙烧-酸浸 | 粉煤灰(山西) | CFA∶K2CO3∶Na2CO3= 1∶0.5∶1.5 | 焙烧:950℃,2 h; 酸浸:60℃,2 h,3 mol/L HCl,S/L=1∶10 | Ga:93.43% | [ |
焙烧-酸浸 | 粉煤灰(内蒙古) | CFA∶NaF=1∶0.75 | 焙烧:800℃,10 min; 酸浸:1200℃,1 h,2 mol/L HNO3,S/L=1∶10 | Ga:94% | [ |
方法 | 原料 | 微波功率/W | 实验条件 | 浸出率 | 文献 |
---|---|---|---|---|---|
高温烧结-微波辐射 | 粉煤灰(云南) | 720 | 常规加热:2 h,CFA∶CaCO3∶Na2CO3=2.6∶2.2∶1; | Al2O3:76% | [ |
微波加热:720 W,10 min | Al2O3:95% | ||||
浮选-微波酸浸 | 粉煤灰(青海) | 常规酸浸:10% HCl,60℃,4 h; | Ga:74.08% | [ | |
微波酸浸:10% HCl,70℃,15 min,S/L=1∶5 | Ga:84.21% | ||||
焙烧-酸浸 | 粉煤灰 | 6000 | 常规加热:900℃,60 min,HAFA∶Na2CO3=1∶0.8; | Al:93.10% | [ |
微波加热:700℃,30 min,HAFA∶Na2CO3=1∶0.8; | Al:95.96% | ||||
酸浸:90℃,60 min,8 mol/L HCl,S/L=1∶9 | |||||
焙烧-酸浸 | 粉煤灰 (南非姆普马兰加) | 100 | 微波加热:280℃,60 min, CFA∶H2SO4+NH4HSO4=1∶1.2; 浸出:60℃,S/L=1∶5,30 min | Al:82.4% Ti:55.6% | [ |
焙烧-酸浸 | 粉煤灰(印度) | 900 | 常规加热:800℃,1 h; | Al:80% | [ |
微波加热:10 min; | Al:89.4% | ||||
酸浸:80℃,1 h,S/L=1∶25 | |||||
焙烧-酸浸 | 粉煤灰 | 500 | 焙烧-酸浸:1 h,80℃; | Si:0.72% Al:40.05% Fe:41.30% | [ |
焙烧-微波场酸浸:500 W,1 h,80℃ | Si:1.63% Al:59.17% Fe:49.20% | ||||
焙烧-碱浸 | 粉煤灰(某火电厂) | 焙烧:600℃,1.5 h,CFA∶Na2CO3=1∶1; | Si:85.62% Al:51.41% | [ | |
微波加热浸出:90℃,1 h,7.5 mol/L NaOH, S/L=1∶15 | |||||
焙烧-微波碱溶 | 粉煤灰(内蒙古) | 400 | 焙烧:850℃,2 h,CFA∶Na2CO3=1∶1; | Ga:82.28% | [ |
微波碱溶:90℃,50 min,200 g/L NaOH,S/L=1∶14 | |||||
焙烧-酸浸 | 粉煤灰 (上海吴泾电厂) | 500 | 常规加热:1200℃,1200 s,CaCO3; | Al:95%(温度降低了400℃,时间缩短至原先的1/20) | [ |
微波加热:800℃,60 s,CaCO3; | |||||
酸浸:98℃,1 h,10%(质量) HCl,S/L=1∶20 | |||||
焙烧-酸浸 | 粉煤灰 | 800 | 微波焙烧:5 min,CFA∶NaOH=1∶1; | Ti:85.77% | [ |
酸浸:88℃,8 h,11.64 mol/L HCl,CFA∶HCl=1∶9 | |||||
焙烧-酸浸 | 粉煤灰(新疆) | 水浴浸出:75℃,4 h,6 mol/L HCl,S/L=1∶5; | Li:40.56%① | [ | |
微波浸出:4 min,6 mol/L HCl,S/L=1∶5 | Li:62.83%① | ||||
焙烧-酸浸 | 粉煤灰(内蒙古) | 常规加热:900℃,60 min,CFA∶Na2CO3=1∶1; | Al:95.10% | [ | |
微波加热:700℃,20 min,CFA∶Na2CO3=1∶1; | Al:95.52% | ||||
酸浸:60 min,6 mol/L HCl,S/L=1∶10 | |||||
微波辅助/常规浸出 | 富锗褐煤灰(云南) | 2000 | 微波浸出:65℃,90 min,10 mol/L HCl,S/L=1∶4 | Ge:83.62% | [ |
Ge:89.49% |
表5 微波预处理技术在粉煤灰活化中的应用
Table 5 Application of microwave pretreatment technology in activation of fly ash
方法 | 原料 | 微波功率/W | 实验条件 | 浸出率 | 文献 |
---|---|---|---|---|---|
高温烧结-微波辐射 | 粉煤灰(云南) | 720 | 常规加热:2 h,CFA∶CaCO3∶Na2CO3=2.6∶2.2∶1; | Al2O3:76% | [ |
微波加热:720 W,10 min | Al2O3:95% | ||||
浮选-微波酸浸 | 粉煤灰(青海) | 常规酸浸:10% HCl,60℃,4 h; | Ga:74.08% | [ | |
微波酸浸:10% HCl,70℃,15 min,S/L=1∶5 | Ga:84.21% | ||||
焙烧-酸浸 | 粉煤灰 | 6000 | 常规加热:900℃,60 min,HAFA∶Na2CO3=1∶0.8; | Al:93.10% | [ |
微波加热:700℃,30 min,HAFA∶Na2CO3=1∶0.8; | Al:95.96% | ||||
酸浸:90℃,60 min,8 mol/L HCl,S/L=1∶9 | |||||
焙烧-酸浸 | 粉煤灰 (南非姆普马兰加) | 100 | 微波加热:280℃,60 min, CFA∶H2SO4+NH4HSO4=1∶1.2; 浸出:60℃,S/L=1∶5,30 min | Al:82.4% Ti:55.6% | [ |
焙烧-酸浸 | 粉煤灰(印度) | 900 | 常规加热:800℃,1 h; | Al:80% | [ |
微波加热:10 min; | Al:89.4% | ||||
酸浸:80℃,1 h,S/L=1∶25 | |||||
焙烧-酸浸 | 粉煤灰 | 500 | 焙烧-酸浸:1 h,80℃; | Si:0.72% Al:40.05% Fe:41.30% | [ |
焙烧-微波场酸浸:500 W,1 h,80℃ | Si:1.63% Al:59.17% Fe:49.20% | ||||
焙烧-碱浸 | 粉煤灰(某火电厂) | 焙烧:600℃,1.5 h,CFA∶Na2CO3=1∶1; | Si:85.62% Al:51.41% | [ | |
微波加热浸出:90℃,1 h,7.5 mol/L NaOH, S/L=1∶15 | |||||
焙烧-微波碱溶 | 粉煤灰(内蒙古) | 400 | 焙烧:850℃,2 h,CFA∶Na2CO3=1∶1; | Ga:82.28% | [ |
微波碱溶:90℃,50 min,200 g/L NaOH,S/L=1∶14 | |||||
焙烧-酸浸 | 粉煤灰 (上海吴泾电厂) | 500 | 常规加热:1200℃,1200 s,CaCO3; | Al:95%(温度降低了400℃,时间缩短至原先的1/20) | [ |
微波加热:800℃,60 s,CaCO3; | |||||
酸浸:98℃,1 h,10%(质量) HCl,S/L=1∶20 | |||||
焙烧-酸浸 | 粉煤灰 | 800 | 微波焙烧:5 min,CFA∶NaOH=1∶1; | Ti:85.77% | [ |
酸浸:88℃,8 h,11.64 mol/L HCl,CFA∶HCl=1∶9 | |||||
焙烧-酸浸 | 粉煤灰(新疆) | 水浴浸出:75℃,4 h,6 mol/L HCl,S/L=1∶5; | Li:40.56%① | [ | |
微波浸出:4 min,6 mol/L HCl,S/L=1∶5 | Li:62.83%① | ||||
焙烧-酸浸 | 粉煤灰(内蒙古) | 常规加热:900℃,60 min,CFA∶Na2CO3=1∶1; | Al:95.10% | [ | |
微波加热:700℃,20 min,CFA∶Na2CO3=1∶1; | Al:95.52% | ||||
酸浸:60 min,6 mol/L HCl,S/L=1∶10 | |||||
微波辅助/常规浸出 | 富锗褐煤灰(云南) | 2000 | 微波浸出:65℃,90 min,10 mol/L HCl,S/L=1∶4 | Ge:83.62% | [ |
Ge:89.49% |
方法 | 原料 | 超声功率/W | 实验条件 | 浸出率 | 文献 | |
---|---|---|---|---|---|---|
无超声 | 有超声 | |||||
超声波-过氧化氢辅助硫酸浸出 | 粉煤灰(伊朗) | 浸出:15.67%(vol) NaOH,32.18%(vol) H2SO4, 50℃,1 h,S/L=0.6 g/L | V:73% Y:35% | V:100% Y:97% | [ | |
超声波辅助酸浸 | 粉煤灰(内蒙古) | 25% | 研磨:60 min; 焙烧:1 h; 酸浸:85℃,S/L=1∶(7~9) | Al:67% | Al:86% | [ |
浓硫酸烧结-超声浸出 | 粉煤灰(内蒙古) | 333 | 研磨:3 h; 烧结:290℃,1 h; 浸出:80% H2SO4,CFA∶H2SO4=1.5∶1 | Al2O3:90.5%(时间缩短15~30 min,温度降低5~10℃) | [ | |
超声波辅助碱性溶解 | 粉煤灰(辽宁) | 720 | 碱溶:25%(质量) NaOH,转速300 r/min, 70 min,110℃ | Si:34.96% | Si:54.42% | [ |
超声两步浸出法 | 粉煤灰(韩国) | 100 | 第一步:室温,固体负载量为 250 g灰/L H2SO4,1.0 mol/L H2SO4 第二步:超声波与加热套相结合浸出, 30℃、3 h,90℃、4 h | Y:66% Nd:63% | [ | |
柠檬汁有机酸超声辅助浸出 | 粉煤灰 | 159 | 浸出:27.9%柠檬汁, 10% H2O2,35℃,2 h,S/L=0.01% | V:88.7% | [ |
表6 超声波预处理技术在粉煤灰活化中的应用
Table 6 Application of ultrasonic pretreatment technology in activation of fly ash
方法 | 原料 | 超声功率/W | 实验条件 | 浸出率 | 文献 | |
---|---|---|---|---|---|---|
无超声 | 有超声 | |||||
超声波-过氧化氢辅助硫酸浸出 | 粉煤灰(伊朗) | 浸出:15.67%(vol) NaOH,32.18%(vol) H2SO4, 50℃,1 h,S/L=0.6 g/L | V:73% Y:35% | V:100% Y:97% | [ | |
超声波辅助酸浸 | 粉煤灰(内蒙古) | 25% | 研磨:60 min; 焙烧:1 h; 酸浸:85℃,S/L=1∶(7~9) | Al:67% | Al:86% | [ |
浓硫酸烧结-超声浸出 | 粉煤灰(内蒙古) | 333 | 研磨:3 h; 烧结:290℃,1 h; 浸出:80% H2SO4,CFA∶H2SO4=1.5∶1 | Al2O3:90.5%(时间缩短15~30 min,温度降低5~10℃) | [ | |
超声波辅助碱性溶解 | 粉煤灰(辽宁) | 720 | 碱溶:25%(质量) NaOH,转速300 r/min, 70 min,110℃ | Si:34.96% | Si:54.42% | [ |
超声两步浸出法 | 粉煤灰(韩国) | 100 | 第一步:室温,固体负载量为 250 g灰/L H2SO4,1.0 mol/L H2SO4 第二步:超声波与加热套相结合浸出, 30℃、3 h,90℃、4 h | Y:66% Nd:63% | [ | |
柠檬汁有机酸超声辅助浸出 | 粉煤灰 | 159 | 浸出:27.9%柠檬汁, 10% H2O2,35℃,2 h,S/L=0.01% | V:88.7% | [ |
技术方法 | 原料中氧化铝含量/% | 实验条件 | 铝浸出率/% | 文献 | |
---|---|---|---|---|---|
未预处理 | 预处理后 | ||||
研磨 | 42.8 | 研磨:振动磨,480 min,2.769~6.963 μm,球料比1∶4; 酸浸:220℃,12 mol/L H2SO4 | 27.8 | 74.5 | [ |
加压 | 30.63 | 酸浸:160℃,1.2 mol/L H2SO4,S/L=1∶10; 2.2 MPa,220℃,1.2 mol/L H2SO4,S/L=1∶10 | 33.87 | 62.71 | [ |
真空 | 49.68 | 常规加热:900℃,60 min,CFA∶Na2CO3=1∶1; 真空下常规加热:-0.04 MPa,900℃,20 min,CFA∶Na2CO3=1∶1; 浸出:90℃,60 min,8 mol/L HCl,S/L=1∶9 | 93.10 | 93.02 | [ |
预脱硅 | 48.45 | 预脱硅:150 g/L NaOH,130℃,1 h,S/L=1∶2; 焙烧:Na2CO3∶SiO2=1∶0.7,900℃,2 h; 酸浸:4 mol/L H2SO4,1 h | 82 | 93.1 | [ |
焙烧 | 17.50 | 焙烧:900℃,2 h,CFA∶Na2CO3=1∶1; 酸浸:95℃,5 h,w(H2SO4)=35%,S/L=1∶3 | 44 | 95 | [ |
微波 | 46.22 | 常规加热:900℃,60 min,CFA∶Na2CO3=1∶1; 微波加热:2 kW,2.45 GHz,700℃,20 min,CFA∶Na2CO3=1∶1; 酸浸:60 min,6 mol/L HCl,S/L=1∶10 | 95.10 | 95.52 | [ |
超声 | 33.54 | 研磨:3 h; 烧结:290℃,1 h; 超声:80% H2SO4,CFA∶H2SO4=1.5∶1,333 W | 90.5 | [ | |
(时间减少15~30 min;温度降低5~10℃) |
表7 粉煤灰中铝元素在不同预处理技术下的浸出率
Table 7 Leaching rates of aluminum in fly ash under different pretreatment technologies
技术方法 | 原料中氧化铝含量/% | 实验条件 | 铝浸出率/% | 文献 | |
---|---|---|---|---|---|
未预处理 | 预处理后 | ||||
研磨 | 42.8 | 研磨:振动磨,480 min,2.769~6.963 μm,球料比1∶4; 酸浸:220℃,12 mol/L H2SO4 | 27.8 | 74.5 | [ |
加压 | 30.63 | 酸浸:160℃,1.2 mol/L H2SO4,S/L=1∶10; 2.2 MPa,220℃,1.2 mol/L H2SO4,S/L=1∶10 | 33.87 | 62.71 | [ |
真空 | 49.68 | 常规加热:900℃,60 min,CFA∶Na2CO3=1∶1; 真空下常规加热:-0.04 MPa,900℃,20 min,CFA∶Na2CO3=1∶1; 浸出:90℃,60 min,8 mol/L HCl,S/L=1∶9 | 93.10 | 93.02 | [ |
预脱硅 | 48.45 | 预脱硅:150 g/L NaOH,130℃,1 h,S/L=1∶2; 焙烧:Na2CO3∶SiO2=1∶0.7,900℃,2 h; 酸浸:4 mol/L H2SO4,1 h | 82 | 93.1 | [ |
焙烧 | 17.50 | 焙烧:900℃,2 h,CFA∶Na2CO3=1∶1; 酸浸:95℃,5 h,w(H2SO4)=35%,S/L=1∶3 | 44 | 95 | [ |
微波 | 46.22 | 常规加热:900℃,60 min,CFA∶Na2CO3=1∶1; 微波加热:2 kW,2.45 GHz,700℃,20 min,CFA∶Na2CO3=1∶1; 酸浸:60 min,6 mol/L HCl,S/L=1∶10 | 95.10 | 95.52 | [ |
超声 | 33.54 | 研磨:3 h; 烧结:290℃,1 h; 超声:80% H2SO4,CFA∶H2SO4=1.5∶1,333 W | 90.5 | [ | |
(时间减少15~30 min;温度降低5~10℃) |
预处理方法 | 机理 | 优点 | 缺点 |
---|---|---|---|
物理预处理 分选 筛分 | 粒径差异 | 1.结构简单,布局合理,功能完善 2.设备运行可靠,检修维护工作 量小 | 1.筛选效率低 2.分离精度低 |
重选 | 密度差异 | 1.低成本、高效率 2.操作简便 3.粒径范围大 | 1.分离精度相对较低 2.不适用于细颗粒 |
浮选 | 表面湿润性差异 | 1.高分离精度 2.适用于细颗粒 3.适应良好 | 1.需要大量的水 2.使用有效试剂 3.需要脱水和干燥设备 |
电选 | 导电性差异 | 1.操作简单,运行成本低 2.节约水资源 3.低环境污染 | 1.湿度要求低 2.充电装置要求高 |
磁选 | 磁性差异 | 1.无二次污染 2.成本低 | 1.分选效率低 2.浪费水资源 |
机械研磨 | 磨削、挤压和碰撞等机械作用 | 1.工艺简单 2.能耗较低 | 1.只适用于粗灰 2.提高粉煤灰的活性有限 |
加压 | 高温、高压 | 1.反应时间短,浸出率高 2.环境友好 | 1.投资大 2.能耗高、高温高压对设备要求高 |
真空 | 在低于正常大气压力的给定空间下 进行实验操作等所需的技术 | 1.加快反应效率 2.缩短反应时间 3.避免环境污染 | 1.技术成本高 2.耗电高 |
化学预处理 预脱硅 | 加氢氧化钠脱去粉煤灰中以无定形 状态存在的SiO2 | 1.尾渣量少 2.能耗较低,设备腐蚀小 | 1.脱硅反应时间不宜过长 2.经济性、环保性差 |
焙烧 | 高温破坏晶相稳定结构 | 1.操作简单 2.能耗低,生产环境好 | 对环境造成二次污染 |
微波 | 分子极化 | 1.选择性加热,快速加热,热转化 效率高,均匀加热 2.环境友好 | 1.微波加热速率过快导致样品内部 结构破坏 2.影响因素很多,过程不易控制 |
超声波 | 机械效应、空化作用、热效应 | 1.提取时间短,提取产率高 2.操作简单,设备维护、保养方便 | 1.设备大型化,造价高,噪声大, 能耗高 2.超声波探头表面的老化会改变 提取效率 |
表面活性剂 | 界面吸附、润湿作用、增溶作用、分散作用 | 1.增加提取效率,缩短提取时间 2.降低成本 3.优化有效组分 4.安全环保 | 局限性比较大,多采用表面活性剂 与其他技术联合 |
生物预处理 微生物 | 破坏粉煤灰表面结构 | 1.低能耗、低成本 2.环境友好 | 提取缓慢 |
表8 粉煤灰的预处理方法对比
Table 8 Comparison of pretreatment methods of fly ash
预处理方法 | 机理 | 优点 | 缺点 |
---|---|---|---|
物理预处理 分选 筛分 | 粒径差异 | 1.结构简单,布局合理,功能完善 2.设备运行可靠,检修维护工作 量小 | 1.筛选效率低 2.分离精度低 |
重选 | 密度差异 | 1.低成本、高效率 2.操作简便 3.粒径范围大 | 1.分离精度相对较低 2.不适用于细颗粒 |
浮选 | 表面湿润性差异 | 1.高分离精度 2.适用于细颗粒 3.适应良好 | 1.需要大量的水 2.使用有效试剂 3.需要脱水和干燥设备 |
电选 | 导电性差异 | 1.操作简单,运行成本低 2.节约水资源 3.低环境污染 | 1.湿度要求低 2.充电装置要求高 |
磁选 | 磁性差异 | 1.无二次污染 2.成本低 | 1.分选效率低 2.浪费水资源 |
机械研磨 | 磨削、挤压和碰撞等机械作用 | 1.工艺简单 2.能耗较低 | 1.只适用于粗灰 2.提高粉煤灰的活性有限 |
加压 | 高温、高压 | 1.反应时间短,浸出率高 2.环境友好 | 1.投资大 2.能耗高、高温高压对设备要求高 |
真空 | 在低于正常大气压力的给定空间下 进行实验操作等所需的技术 | 1.加快反应效率 2.缩短反应时间 3.避免环境污染 | 1.技术成本高 2.耗电高 |
化学预处理 预脱硅 | 加氢氧化钠脱去粉煤灰中以无定形 状态存在的SiO2 | 1.尾渣量少 2.能耗较低,设备腐蚀小 | 1.脱硅反应时间不宜过长 2.经济性、环保性差 |
焙烧 | 高温破坏晶相稳定结构 | 1.操作简单 2.能耗低,生产环境好 | 对环境造成二次污染 |
微波 | 分子极化 | 1.选择性加热,快速加热,热转化 效率高,均匀加热 2.环境友好 | 1.微波加热速率过快导致样品内部 结构破坏 2.影响因素很多,过程不易控制 |
超声波 | 机械效应、空化作用、热效应 | 1.提取时间短,提取产率高 2.操作简单,设备维护、保养方便 | 1.设备大型化,造价高,噪声大, 能耗高 2.超声波探头表面的老化会改变 提取效率 |
表面活性剂 | 界面吸附、润湿作用、增溶作用、分散作用 | 1.增加提取效率,缩短提取时间 2.降低成本 3.优化有效组分 4.安全环保 | 局限性比较大,多采用表面活性剂 与其他技术联合 |
生物预处理 微生物 | 破坏粉煤灰表面结构 | 1.低能耗、低成本 2.环境友好 | 提取缓慢 |
1 | Ding J, Ma S, Shen S, et al. Research and industrialization progress of recovering alumina from fly ash: a concise review[J]. Waste Management, 2017, 60: 375-387. |
2 | 徐硕, 杨金林, 马少健. 粉煤灰综合利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 104-111. |
Xu S, Yang J L, Ma S J. Research progress in the comprehensive utilization of fly ash[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 104-111. | |
3 | 李海生, 温晓龙, 陈英华, 等. 粉煤灰电选脱炭技术的研究现状及展望[J]. 选煤技术, 2018(6): 1-7. |
Li H S, Wen X L, Chen Y H, et al. State-of-the-art and perspective of the research work on the technology for triboelectrostatic separation of carbon from fly ash[J].Coal Preparation Technology, 2018(6): 1-7. | |
4 | 张祥成, 孟永彪. 浅析中国粉煤灰的综合利用现状[J]. 无机盐工业, 2020, 52(2): 1-5. |
Zhang X C, Meng Y B. Brief analysis on present situation of comprehensive utilization of fly ash in China[J]. Inorganic Chemicals Industry, 2020, 52(2): 1-5. | |
5 | 李琴, 杨岳斌, 刘君, 等. 我国粉煤灰利用现状及展望[J]. 能源研究与管理, 2022(1): 29-34. |
Li Q, Yang Y B, Liu J, et al. Present status and prospect of fly ash utilization in China[J]. Energy Research and Management, 2022(1): 29-34. | |
6 | Wang C, Xu G G, Gu X Y, et al. High value-added applications of coal fly ash in the form of porous materials: a review[J]. Ceramics International, 2021, 47(16): 22302-22315. |
7 | 王苗, 郭彦霞, 程芳琴. 粉煤灰活化提取铝铁的研究[J]. 科技创新与生产力, 2012(1): 91-94. |
Wang M, Guo Y X, Cheng F Q. Research on drawing Al and Fe from pulverized fuel ash[J]. Sci-Tech Innovation and Productivity, 2012(1): 91-94. | |
8 | Wang N N, Sun X Y, Zhao Q, et al. Leachability and adverse effects of coal fly ash: a review[J]. Journal of Hazardous Materials, 2020, 396: 122725. |
9 | 徐涛, 兰海平, 杨超, 等. 粉煤灰物理化学性质对比分析研究[J]. 无机盐工业, 2018, 50(7): 65-68. |
Xu T, Lan H P, Yang C, et al. Comparative research on physical and chemical properties of coal ash[J]. Inorganic Chemicals Industry, 2018, 50(7): 65-68. | |
10 | Li S Y, Bo P H, Kang L W, et al. Activation pretreatment and leaching process of high-alumina coal fly ash to extract lithium and aluminum[J]. Metals, 2020, 10(7): 893. |
11 | 王庆平, 陆向阳. 粉末冶金法制备粉煤灰/铝基复合材料的研究[J]. 热加工工艺, 2007, 36(4): 24-25, 45. |
Wang Q P, Lu X Y. Study of fly ash particulate aluminium based composite prepared by powder metallurgy technique[J]. Hot Working Technology, 2007, 36(4): 24-25, 45. | |
12 | 李文清, 邹萍, 池君洲, 等. 用盐酸从循环流化床粉煤灰中浸出氧化铝[J]. 湿法冶金, 2020, 39(2): 110-113. |
Li W Q, Zou P, Chi J Z, et al. Leaching alumina from circulating fluidized bed fly ash with hydrochloric acid [J].Hydrometallurgy of China, 2020, 39(2): 110-113. | |
13 | 冯泽平. 高钙粉煤灰地质聚合物的制备及耐久性研究[J]. 矿产保护与利用, 2018(2): 107-110. |
Feng Z P. Study on Preparation and durability of high-calcium fly ash based geopolymer[J]. Conservation and Utilization of Mineral Resources, 2018(2): 107-110. | |
14 | 唐志华, 呼和涛力, 郭华芳, 等. 宁夏工业固废处置与资源化利用战略研究[J]. 中国煤炭, 2021, 47(6): 40-52. |
Tang Z H, Hu H T L, Guo H F, et al. Strategic study on industrial solid waste disposal and resource utilization in Ningxia[J]. China Coal, 2021, 47(6): 40-52. | |
15 | Lv Q F, Wang Z S, Gu L Y, et al. Effect of sodium sulfate on strength and microstructure of alkali-activated fly ash based geopolymer[J]. Journal of Central South University, 2020, 27(6): 1691-1702. |
16 | 冯培峰. 电厂粉煤灰高值化利用现状与最新进展[J]. 中国资源综合利用, 2020, 38(11): 100-104. |
Feng P F. Progress and development of high value utilization for coal fly ash from power plant[J]. China Resources Comprehensive Utilization, 2020, 38(11): 100-104. | |
17 | 秦身钧, 徐飞, 崔莉, 等. 煤型战略关键微量元素的地球化学特征及资源化利用[J]. 煤炭科学技术, 2022, 50(3): 1-38. |
Qin S J, Xu F, Cui L, et al. Geochemistry characteristics and resource utilization of strategically critical trace elements from coal-related resources[J]. Coal Science and Technology, 2022, 50(3): 1-38. | |
18 | 冯文丽, 吕学斌, 熊健, 等. 粉煤灰高附加值利用研究进展[J]. 无机盐工业, 2021, 53(4): 25-31. |
Feng W L, Lv X B, Xiong J, et al. Research progress of high added value utilization of coal fly ash[J]. Inorganic Chemicals Industry, 2021, 53(4): 25-31. | |
19 | 范文戬. 甘肃某电厂粉煤灰物质组成及铁的赋存状态的矿物学研究[J]. 矿冶, 2002(B07): 274-277. |
Fan W J. Mineralogical study on the material composition of fly ash and the occurrence state of iron in a power plant in Gansu Province[J]. Mining & Metallurgy, 2002(B07): 274-277. | |
20 | 赵永彬. 粉煤灰的矿物学性质研究[J]. 洁净煤技术, 2015, 21(4): 112-116, 121. |
Zhao Y B. Research on mineralogical properties of fly ash[J]. Clean Coal Technology, 2015, 21(4): 112-116, 121. | |
21 | Li S Y, Qin S J, Kang L W, et al. An efficient approach for lithium and aluminum recovery from coal fly ash by pre-desilication and intensified acid leaching processes[J]. Metals, 2017, 7(7): 272. |
22 | Qin S J, Sun Y Z, Li Y H, et al. Coal deposits as promising alternative sources for gallium[J]. Earth-Science Reviews, 2015, 150: 95-101. |
23 | 马鹏传, 李兴, 温振宇, 等. 粉煤灰的活性激发与机理研究进展[J]. 无机盐工业, 2021, 53(10): 28-35. |
Ma P C, Li X, Wen Z Y, et al. Research progress on activation and mechanism of fly ash[J]. Inorganic Chemicals Industry, 2021, 53(10): 28-35. | |
24 | 钱觉时, 施惠生. 粉煤灰的分选技术[J]. 粉煤灰综合利用, 2004, 17(2): 29-33. |
Qian J S, Shi H S. The technology of classfication in fly ash[J]. Fly Ash Comprehensive Utilization, 2004, 17(2): 29-33. | |
25 | 杜杰, 欧阳平, 张贤明, 等. 粉煤灰分选研究进展[J]. 应用化工, 2020, 49(7): 1851-1856. |
Du J, Ouyang P, Zhang X M, et al. Research progress of fly ash separation[J]. Applied Chemical Industry, 2020, 49(7): 1851-1856. | |
26 | 孙红娟, 曾丽, 彭同江. 粉煤灰高值化利用研究现状与进展[J]. 材料导报, 2021, 35(3): 3010-3015. |
Sun H J, Zeng L, Peng T J. Research status and progress of high-value utilization of coal fly ash[J]. Materials Reports, 2021, 35(3): 3010-3015. | |
27 | Xing Y W, Guo F Y, Xu M D, et al. Separation of unburned carbon from coal fly ash: a review[J]. Powder Technology, 2019, 353: 372-384. |
28 | Yang L, Li D L, Zhu Z N, et al. Effect of the intensification of preconditioning on the separation of unburned carbon from coal fly ash[J]. Fuel, 2019, 242: 174-183. |
29 | 毕宁. 物料破碎筛分器在粉煤灰气力输灰系统中的应用[J]. 科技创新与应用, 2017(34): 152-153. |
Bi N. Application of material crushing and sieving machine in fly ash pneumatic conveying system of fly ash[J]. Technology Innovation and Application, 2017(34): 152-153. | |
30 | 薛芳斌, 纪莹璐, 宋慧平, 等. 粉煤灰浮选脱碳试验研究[J]. 粉煤灰综合利用, 2013, 26(4): 14-16, 20. |
Xue F B, Ji Y L, Song H P, et al. Experimental study of flotation of removal carbon in fly ash[J]. Fly Ash Comprehensive Utilization, 2013, 26(4): 14-16, 20. | |
31 | 李海兰, 王凡, 王录峰. 超声波辅助粉煤灰浮选脱碳[J]. 洁净煤技术, 2018, 24(4): 46-49. |
Li H L, Wang F, Wang L F. Ultrasonic-aided flotation decarbonization of fly ash[J]. Clean Coal Technology, 2018, 24(4): 46-49. | |
32 | 胡振文, 郭远新, 林祥玲, 等. 高炭粉煤灰浮选脱炭试验研究[J]. 硅酸盐通报, 2021, 40(3): 907-913. |
Hu Z W, Guo Y X, Lin X L, et al. Experimental research on decarbonization of high-carbon fly ash by flotation[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 907-913. | |
33 | Valeev D. Complex utilisation of ekibastuz brown coal fly ash: iron & carbon separation and aluminum extraction[J]. Journal of Cleaner Production, 2019, 218: 192-201. |
34 | 朱广利, 王浩宇, 李海龙, 等. 粉煤灰脱炭研究进展及展望[J]. 洁净煤技术, 2017, 23(1): 110-114. |
Zhu G L, Wang H Y, Li H L, et al. Methods of fly ash decarbonization[J]. Clean Coal Technology, 2017, 23(1): 110-114. | |
35 | Hwang J Y, Sun X, Li Z. Unburned carbon from fly ash for mercury adsorption (Ⅰ): Separation and characterization of unburned carbon[J]. Journal of Minerals and Materials Characterization and Engineering, 2002, 1(1): 39-60. |
36 | 张权笠. 大方粉煤灰资源化利用研究[D]. 贵州:贵州大学, 2017. |
Zhang Q L. Study on resource utilization of Dafang fly ash[D]. Guiyang: Guizhou University, 2017. | |
37 | Zhang L, Yang F, Tao Y J. Removal of unburned carbon from fly ash using enhanced gravity separation and the comparison with froth flotation[J]. Fuel, 2020, 259: 116282. |
38 | Chen T, Yan B, Li L L, et al. Mineralogy characteristic study and exploration on the valuable metals enrichment of coal fly ash[J]. Advances in Polymer Technology, 2019, 2019: 1839450. |
39 | 吴海洋, 张军, 张灿强, 等. 粉煤灰传导感应分选试验研究[J]. 洁净煤技术, 2017, 23(3): 100-105. |
Wu H Y, Zhang J, Zhang C Q, et al. Experimental study on conduction induction separation of fly ash[J]. Clean Coal Technology, 2017, 23(3): 100-105. | |
40 | 张灿强. 不同种类粉煤灰特性的实验研究[D]. 南京:东南大学, 2017. |
Zhang C Q. Experimental study on characteristics of different kinds of fly ash[D]. Nanjing: Southeast University, 2017. | |
41 | 申有悦, 邵怀志, 杨晓, 等. 摩擦静电分选技术研究与应用进展[J]. 矿冶工程, 2022, 42(5): 44-50. |
Shen Y Y, Shao H Z, Yang X, et al. Progress in research and application of triboelectrostatic separation technology[J]. Mining and Metallurgical Engineering, 2022, 42(5): 44-50. | |
42 | Tao Y J, Zhang L, Tao D P, et al. Effects of key factors of rotary triboelectrostatic separator on efficiency of fly ash decarbonization[J]. International Journal of Mining Science and Technology, 2017, 27(6): 1037-1042. |
43 | 于凤芹, 章新喜, 段代勇, 等. 粉煤灰摩擦电选脱碳的试验研究[J]. 选煤技术, 2008(1): 8-11, 75. |
Yu F Q, Zhang X X, Duan D Y, et al. Test and research on decarbonization of fly ash by friction electric separation[J].Coal Preparation Technology, 2008(1): 8-11, 75. | |
44 | Li C Y, Zhang X X, Li H S, et al. Influence of particle size range on coal fly ash triboelectrostatic separation[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021,DOI:10.1080/15567036.2021.1928333 . |
45 | 孙少博, 张永锋, 崔景东, 等. 粉煤灰高值化利用中的除铁工艺[J]. 化工新型材料, 2015, 43(1): 223-225. |
Sun S B, Zhang Y F, Cui J D, et al. Process of iron removal from fly ash in use of high value[J]. New Chemical Materials, 2015, 43(1): 223-225. | |
46 | 刘汇东, 宋红见, 魏建朋, 等. 珞璜电厂珞璜电厂粉煤灰微珠的精细化分选[J]. 科技导报, 2015, 33(4): 49-55. |
Liu H D, Song H J, Wei J P, et al. Experiments on fine separation of microspheres from fly ash of Luohuang coal-fired power plant[J]. Science & Technology Review, 2015, 33(4): 49-55. | |
47 | 王小芳. 基于CFB粉煤灰提铝的铁杂质分离基础研究[D]. 太原: 山西大学, 2020. |
Wang X F. Study on the separation of iron impurities based on the extraction of aluminum from CFB fly ash [D]. Taiyuan: Shanxi University, 2020. | |
48 | 王震, 黄珍丽, 王培根, 等. 电厂粉煤灰活化工艺参数的研究[J]. 应用化工, 2016, 45(6): 1100-1102, 1106. |
Wang Z, Huang Z L, Wang P G, et al. Study on process parameters for activating power plant fly ash[J]. Applied Chemical Industry, 2016, 45(6): 1100-1102, 1106. | |
49 | Kumar S, Mucsi G, Kristály F, et al. Mechanical activation of fly ash and its influence on micro and nano-structural behaviour of resulting geopolymers[J]. Advanced Powder Technology, 2017, 28(3): 805-813. |
50 | Shokuhfar A, Nasiri-Tabrizi B. Nanostructured materials prepared by mechanical alloying and mechanochemical process[J]. Defect and Diffusion Forum, 2009, 817: 283-286. |
51 | 吴艳, 翟玉春, 尹振, 等. 粉煤灰酸法提取氧化铝过程的机械研磨活化研究[J]. 矿冶工程, 2009, 29(1): 71-73, 77. |
Wu Y, Zhai Y C, Yin Z, et al. Study on mechanical grinding activation fly ash and acid leaching of aluminium oxide[J]. Mining and Metallurgical Engineering, 2009, 29(1): 71-73, 77. | |
52 | Wen Z P, Zhou C C, Pan J H, et al. Recovery of rare-earth elements from coal fly ash via enhanced leaching[J]. International Journal of Coal Preparation and Utilization, 2022, 42(7): 2041-2055. |
53 | 王恒辉. 硫化铜精矿加压浸出降酸工艺及试验分析[J]. 中国有色冶金, 2021, 50(5): 24-27, 39. |
Wang H H. Deacidification technology of copper sulfide concentrate pressure leaching and test analysis[J]. China Nonferrous Metallurgy, 2021, 50(5): 24-27, 39. | |
54 | 王海北, 蒋开喜, 王玉芳, 等. 重金属加压浸出技术现状及展望[J]. 有色金属(冶炼部分), 2021(9): 1-11. |
Wang H B, Jiang K X, Wang Y F, et al. Status and prospect on pressure leaching technologies for heavy metals[J]. Nonferrous Metals(Extractive Metallurgy), 2021(9): 1-11. | |
55 | 张驰, 邹小平, 黄胜. 加压浸出技术在回收铜冶炼废渣中有价金属的应用[J]. 云南化工, 2021, 48(7): 110-112. |
Zhang C, Zou X P, Huang S. Pressure leaching technology for recovering valuable metals from copper smelting slag[J]. Yunnan Chemical Technology, 2021, 48(7): 110-112. | |
56 | 王海北, 李贺, 王玉芳. 稀贵金属加压浸出技术现状及展望[J]. 有色金属(冶炼部分), 2021(6): 1-9. |
Wang H B, Li H, Wang Y F. Status and prospect on pressure leaching technologies for rare and precious metals[J]. Nonferrous Metals(Extractive Metallurgy), 2021(6): 1-9. | |
57 | 吴成友, 余红发, 郑利娜, 等. 加压酸浸法提取粉煤灰中的Al2O3和Fe2O3 [J]. 化工环保, 2012, 32(2): 173-176. |
Wu C Y, Yu H F, Zheng L N, et al. Acid extraction of Al2O3 and Fe2O3 from fly ash under pressure[J]. Environmental Protection of Chemical Industry, 2012, 32(2): 173-176. | |
58 | 陈硕, 王立久. 酸浸法提取粉煤灰中铝铁及纳米氧化铁的制备[J]. 材料科学与工程学报, 2018, 36(6): 1003-1009. |
Chen S, Wang L J. Preparation of α-Fe2O3 nanoparticles from coal fly ash[J]. Journal of Materials Science and Engineering, 2018, 36(6): 1003-1009. | |
59 | Lv Y L, Chen C Y, Mao Z H. Preparation of alumina from fly ash by sulfuric acid[J]. Advanced Materials Research, 2013, 734/735/736/737: 1551-1554. |
60 | 乔潮. 基于加压碱浸的电厂粉煤灰脱硅过程研究[J]. 山西电力, 2021(4): 66-69. |
Qiao C. Study on desilication process of fly ash in power plants based on pressurized alkali leaching[J]. Shanxi Electric Power, 2021(4): 66-69. | |
61 | 赵爱春, 刘煜金, 张廷安, 等. 粉煤灰硫酸浸出性能研究[J/OL]. 中国有色冶金, 2022, . |
Zhao A C, Liu Y J, Zhang T A. Study on sulfuric acid leaching performance of fly ash[J/OL]. China Nonferrous Metallurgy, 2022,. | |
62 | Wang P, Liu H Y, Zheng F Y, et al. Extraction of aluminum from coal fly ash using pressurized sulfuric acid leaching with emphasis on optimization and mechanism[J]. JOM, 2021, 73(9): 2643-2651. |
63 | Wu C Y, Yu H F, Zhang H F. Extraction of aluminum by pressure acid-leaching method from coal fly ash[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(9): 2282-2288. |
64 | Lin M, Liu Y Y, Lei S M, et al. High-efficiency extraction of Al from coal-series kaolinite and its kinetics by calcination and pressure acid leaching[J]. Applied Clay Science, 2018, 161: 215-224. |
65 | 杜艳霞, 黄岩, 池君洲, 等. 外场技术在粉煤灰综合利用中的应用[J]. 露天采矿技术, 2013, 28(3): 80-82, 84. |
Du Y X, Huang Y, Chi J Z, et al. Application of outfield technique of pulverized coal ash comprehensive utilization[J]. Opencast Mining Technology, 2013, 28(3): 80-82, 84. | |
66 | Zhang L G, Xu Z M. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash[J]. Journal of Hazardous Materials, 2016, 312: 28-36. |
67 | Zhang L G, Xu Z M. Application of vacuum reduction and chlorinated distillation to enrich and prepare pure germanium from coal fly ash[J]. Journal of Hazardous Materials, 2017, 321: 18-27. |
68 | 周保成. 粉煤灰微波强化活化及机理研究[D]. 昆明: 昆明理工大学, 2019. |
Zhou B C. Study on microwave enhanced activation of fly ash and its mechanism [D]. Kunming: Kunming University of Science and Technology, 2019. | |
69 | Xue Y, Yu W Z, Mei J, et al. A clean process for alumina extraction and ferrosilicon alloy preparation from coal fly ash via vacuum thermal reduction[J]. Journal of Cleaner Production, 2019, 240: 118262. |
70 | Kou L Y, Zhou J W, Yang L, et al. Effects of vacuum conditions on activation of high-alumina fly ash roasted using conventional and microwave heating[J]. Materials Research Express, 2020, 7(2): 025515. |
71 | 张西民. 高铝粉煤灰预脱硅-硫酸浸出法制取氧化铝熟料窑烟气净化回收工艺探讨[J]. 轻金属, 2014(3): 20-23. |
Zhang X M. Discussion on purifying and recovery process of the flue gas from the alumina sinter kiln in high alumina fly ash pre-desilication sulfuric acid leaching method[J]. Light Metals, 2014(3): 20-23. | |
72 | 高荣, 郭建民, 云冬冬, 等. 电厂粉煤灰提取氧化铝的发展前景[J]. 煤炭加工与综合利用, 2013(2): 65-69. |
Gao R, Guo J M, Yun D D, et al. Development prospect of extracting alumina from fly ash of power plant[J]. Coal Processing & Comprehensive Utilization, 2013(2): 65-69. | |
73 | 许学斌, 朱应宝, 张生, 等. 高铝粉煤灰预脱硅工艺优化的研究[J]. 轻金属, 2013(7): 18-21. |
Xu X B, Zhu Y B, Zhang S, et al. Research on optimizing process of pre-desilication of high-aluminum fly ash[J].Light Metals, 2013(7): 18-21. | |
74 | Guo Y X, Zhao Z S, Zhao Q, et al. Novel process of alumina extraction from coal fly ash by pre-desilicating—Na2CO3 activation—acid leaching technique[J]. Hydrometallurgy, 2017, 169: 418-425. |
75 | 祁光霞, 梁振凯, 雷雪飞, 等. 预脱硅-Na2CO3焙烧-酸浸工艺提取粉煤灰中的氧化铝[J]. 高校化学工程学报, 2016, 30(3): 673-679. |
Qi G X, Liang Z K, Lei X F, et al. Extraction of alumina from coal fly ash by a predesilication-Na2CO3 sintering-acid leaching process[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(3): 673-679. | |
76 | 蒋周青, 马鸿文, 杨静, 等. 低钙烧结法从高铝粉煤灰脱硅产物中提取氧化铝[J]. 轻金属, 2013(11): 9-13. |
Jiang Z Q, Ma H W, Yang J, et al. Extraction of alumina from high-alumina fly ash desilicated residue by low-lime sintering process[J]. Light Metals, 2013(11): 9-13. | |
77 | 王百年, 宛强, 阳春娇, 等. 复合助剂活化粉煤灰提铝工艺条件研究[J]. 轻金属, 2019(1): 18-24. |
Wang B N, Wan Q, Yang C J, et al. Study on the extracting conditions of aluminum from fly ash using compound activator[J]. Light Metals, 2019(1): 18-24. | |
78 | 马钊. 灰场粉煤灰提取氧化铝和白炭黑[D]. 淮南: 安徽理工大学, 2015. |
Ma Z. Extraction of alumina and silica from ash filed fly ash[D]. Huainan: Anhui University of Science & Technology, 2015. | |
79 | 赵瑜, 程文婷, 程芳琴. 碳酸钠助熔粉煤灰提取Al2O3的研究[J]. 中国科技论文, 2015, 10(21): 2513-2517. |
Zhao Y, Cheng W T, Cheng F Q. Study on the extraction of Al2O3 from fly ash calcination by sodium carbonate[J]. China Sciencepaper, 2015, 10(21): 2513-2517. | |
80 | 赵亚娟, 王晓端, 韩昕, 等. NaOH高温活化粉煤灰的理论分析及实验研究[J]. 硅酸盐通报, 2016, 35(11): 3697-3703. |
Zhao Y J, Wang X D, Han X, et al. Theoretical analysis and experimental research on activation of fly ash by NaOH at high temperature[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(11): 3697-3703. | |
81 | 陈杰, 高尚勇, 李思琼, 等. 高铝粉煤灰的活化[J]. 硅酸盐通报, 2016, 35(2): 593-597. |
Chen J, Gao S Y, Li S Q, et al. Activation of high-alumina fly ash[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(2): 593-597. | |
82 | Guo Y X, Li Y Y, Cheng F Q, et al. Role of additives in improved thermal activation of coal fly ash for alumina extraction[J]. Fuel Processing Technology, 2013, 110: 114-12. |
83 | 刘能生, 彭金辉, 张利波, 等. 高铝粉煤灰硫酸铵与碳酸钠焙烧活化对比研究[J]. 昆明理工大学学报(自然科学版), 2016, 41(1): 1-6. |
Liu N S, Peng J H, Zhang L B, et al. Comparative study of ammonium sulfate and sodium carbonate roasting of high aluminum coal fly ash activation[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2016, 41(1): 1-6. | |
84 | 梁振凯, 雷雪飞, 孙应龙, 等. 氯化钙焙烧法提取粉煤灰中的氧化铝[J]. 中国环境科学, 2013, 33(9): 1601-1606. |
Liang Z K, Lei X F, Sun Y L, et al. Extraction of alumina from coal fly ash by calcination with calcium chloride process[J]. China Environmental Science, 2013, 33(9): 1601-1606. | |
85 | 赵泽森, 高建明, 郭彦霞, 等. 不同活化条件下粉煤灰中锂的酸碱溶出特性[J]. 环境科学研究, 2018, 31(3): 569-576. |
Zhao Z S, Gao J M, Guo Y X, et al. Acid-alkali dissolution characteristics of lithium in fly ash under different activation conditions[J]. Research of Environmental Sciences, 2018, 31(3): 569-576. | |
86 | 隋丽丽, 翟玉春, 孙莹莹. 粉煤灰硫酸氢铵焙烧法提取氧化铝的研究[J]. 有色金属(冶炼部分), 2017(4): 20-24. |
Sui L L, Zhai Y C, Sun Y Y. Study on exaction of Al2O3 from fly ash by ammonium bisulfate roasting[J]. Nonferrous Metals(Extractive Metallurgy), 2017(4): 20-24. | |
87 | Wang R C, Zhai Y C, Ning Z Q. Thermodynamics and kinetics of alumina extraction from fly ash using an ammonium hydrogen sulfate roasting method[J]. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(2): 144-149. |
88 | 葛欣, 隋丽丽, 尚志航, 等. 硫酸氢铵焙烧粉煤灰混合焙烧反应动力学研究[J]. 轻金属, 2017(3): 14-17. |
Ge X, Sui L L, Shang Z H, et al. Reaction kinetics of ammonium hydrogen sulfate roasting fly ash[J]. Light Metals, 2017(3): 14-17. | |
89 | Rezaei H, Shafaei S Z, Abdollahi H, et al. A sustainable method for germanium, vanadium and lithium extraction from coal fly ash: sodium salts roasting and organic acids leaching[J]. Fuel, 2022, 312: 122844. |
90 | Tang M C, Zhou C C, Pan J H, et al. Study on extraction of rare earth elements from coal fly ash through alkali fusion-acid leaching[J]. Minerals Engineering, 2019, 136: 36-42. |
91 | 林伟, 王培根, 王震, 等. 粉煤灰焙烧-酸浸提取氧化铝工艺[J]. 安徽化工, 2016, 42(2): 26-29. |
Lin W, Wang P G, Wang Z, et al. Process of coal fly ash roasting and acid leaching[J]. Anhui Chemical Industry, 2016, 42(2): 26-29. | |
92 | 满剑奇, 程立媛, 李文慧, 等. 用高温焙烧-盐酸浸出法从粉煤灰中浸出镓[J]. 湿法冶金, 2022, 41(1): 14-19. |
Man J Q, Cheng L Y, Li W H, et al. Leaching of gallium from fly ash by high temperature roasting-hydrochloric acid leaching method[J]. Hydrometallurgy of China, 2022, 41(1): 14-19. | |
93 | Huang J, Wang Y B, Zhou G X, et al. Investigation on the effect of roasting and leaching parameters on recovery of gallium from solid waste coal fly ash[J]. Metals, 2019, 9(12): 1251. |
94 | 雷鹰, 李雨, 彭金辉, 等. 微波选择性加热在矿冶过程中的应用进展[J]. 材料导报, 2011, 25(15): 119-122. |
Lei Y, Li Y, Peng J H, et al. Application of microwave selective heating on mining and metallurgy processing[J]. Materials Review, 2011, 25(15): 119-122. | |
95 | 薛军, 王伟, 汪群慧. 微波加热在重金属浸出中的应用[J]. 有色金属, 2008(2): 75-80. |
Xue J, Wang W, Wang Q H. Application of microwave heating in heavy metals leaching process[J]. Nonferrous Metals, 2008(2): 75-80. | |
96 | 宋增凯, 陈菓, 彭金辉, 等. 微波加热技术在典型冶金工艺中的应用研究进展[J]. 矿冶, 2014, 23(3): 57-63. |
Song Z K, Chen G, Peng J H, et al. Research progress of application of microwave heating in typical metallurgical technology[J]. Mining and Metallurgy, 2014, 23(3): 57-63. | |
97 | Hu Q, He Y N, Wang F, et al. Microwave technology: a novel approach to the transformation of natural metabolites[J]. Chinese Medicine, 2021, 16(1): 87. |
98 | 李磊, 陈雪芹, 韩龙, 等. 微波活化粉煤灰及其应用研究进展[J]. 粉煤灰综合利用, 2011, 24(5): 53-54, 57. |
Li L, Chen X Q, Han L, et al. Microwave activate fly ash and the research progress of application[J]. Fly Ash Comprehensive Utilization, 2011, 24(5): 53-54, 57. | |
99 | 张寒琦, 金钦汉. 微波化学[J]. 大学化学, 2001(1): 32-36. |
Zhang H Q, Jin Q H. Microwave chemistry[J]. University Chemistry, 2001(1): 32-36. | |
100 | 赵剑宇, 田凯. 微波助溶从粉煤灰提取氧化铝新工艺研究[J]. 无机盐工业, 2005, 37(2): 47-49. |
Zhao J Y, Tian K. Study on extraction of aluminium oxide from fly ash by solubilization of microwave[J]. Inorganic Chemicals Industry, 2005, 37(2): 47-49. | |
101 | 吕早生, 张路平, 帅清昱, 等. 粉煤灰中镓富集与浸出工艺研究[J]. 化学与生物工程, 2014, 31(7): 66-69. |
Lyu Z S, Zhang L P, Shuai Q Y, et al. Study on process of enrichment and leaching of gallium from fly ash[J]. Chemistry & Bioengineering, 2014, 31(7): 66-69. | |
102 | Hu T, Kou L Y, Yang L, et al. Micro-structural evolution of high aluminium fly ash enhanced by microwave heating to accelerate activation reaction process[J]. Powder Technology, 2021, 377: 739-747. |
103 | Ma Y Q. A cleaner approach for recovering Al and Ti from coal fly ash via microwave-assisted baking, leaching, and precipitation[J]. Hydrometallurgy, 2021, 206: 105754. |
104 | Kumar A, Agrawal S, Dhawan N. Processing of coal fly ash for the extraction of alumina values[J]. Journal of Sustainable Metallurgy, 2020, 6(2): 294-306. |
105 | 梁金奎, 刘晓荣, 罗林根, 等. 粉煤灰中有价元素的强化浸出研究[J]. 矿冶工程, 2008, 28(6): 76-79, 83. |
Liang J K, Liu X R, Luo L G, et al. Research on strengthening leaching of the valuable elements in fly ash[J]. Mining and Metallurgical Engineering, 2008, 28(6): 76-79, 83. | |
106 | 符秀锋, 徐本军, 黄彩娟. 微波碱溶法从粉煤灰中浸出硅、铝的试验研究[J]. 湿法冶金, 2014, 33(3): 196-198. |
Fu X F, Xu B J, Huang C J. Alkali dissolution of silicon and aluminum from fly ash by microwave heating[J]. Hydrometallurgy of China, 2014, 33(3): 196-198. | |
107 | 徐梦, 辛志峰, 李婷, 等. 微波碱溶法对粉煤灰中镓浸出效果的影响研究[J]. 轻金属, 2016(6): 16-20. |
Xu M, Xin Z F, Li T, et al. Influence of microwave alkali dissolution method on gallium leaching effect from fly ash[J]. Light Metals, 2016(6): 16-20. | |
108 | Zhang Z Y, Qiao X C, Yu J G. Aluminum release from microwave-assisted reaction of coal fly ash with calcium carbonate[J]. Fuel Processing Technology, 2015, 134: 303-309. |
109 | 李昌伟, 梁杰, 雷泽明, 等. 微波活化焙烧对粉煤灰中钛浸出率的影响[J]. 中国有色冶金, 2015, 44(5): 71-73, 76. |
Li C W, Liang J, Lei Z M, et al. The influence on the leaching rate of titanium as microwave roasting fly ash[J]. China Nonferrous Metallurgy, 2015, 44(5): 71-73, 76. | |
110 | 董卉, 陈娟, 李箫玉, 等. 烧结剂对新疆粉煤灰中锂浸出的作用特性[J]. 化工进展, 2019, 38(3): 1538-1544. |
Dong H, Chen J, Li X Y, et al. The effect of activator on lithium extraction from Xinjiang fly ash[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1538-1544. | |
111 | Liu N S, Peng J H, Zhang L B, et al. Extraction of aluminum from coal fly ash by alkali activation with microwave heating[J]. Journal of Residuals Science & Technology, 2016, 13(S1):S181-S187. |
112 | Chen Y Q, Zhou J W, Zhang L B, et al. Microwave-assisted and regular leaching of germanium from the germanium-rich lignite ash[J]. Green Processing and Synthesis, 2018, 7(6): 538-545. |
113 | 曾祥菲, 舒建成, 王继钦, 等. 超声波强化菱锰矿中锰的浸出[J]. 有色金属(冶炼部分), 2022(2): 8-15. |
Zeng X F, Shu J C, Wang J Q, et al. Ultrasonic-assisted leaching of manganese from rhodochrosite[J]. Nonferrous Metals(Extractive Metallurgy), 2022(2): 8-15. | |
114 | Lim J L, Kim S W, Shin H S, et al. Leaching behavior of lead from ultrasonically treated MSWI fly ash[J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2004, 39(6): 1587-1599. |
115 | 崔维, 易武平, 蔡安. 超声波强化浸出铝灰中氯的机理[J]. 过程工程学报, 2017, 17(4): 757-762. |
Cui W, Yi W P, Cai A. Mechanism of ultrasound-assisted leaching chlorine from aluminum dross[J]. The Chinese Journal of Process Engineering, 2017, 17(4): 757-762. | |
116 | Masoum H G, Rastegar S O, Khamforoush M. Ultrasound‐assisted leaching of vanadium and yttrium from coal ash: optimization, kinetic and thermodynamic study[J]. Chemical Engineering & Technology, 2021, 44(12): 2249-2256. |
117 | Zhou W, Lu X, Qi C C, et al. Utilisation of ultrasonic treatment to improve the soil amelioration property of coal fly ash[J]. Journal of Environmental Management, 2020, 276. |
118 | 焉杰文, 潘德安, 李彬. 超声强化在湿法浸出过程中的应用[J]. 过程工程学报, 2020, 20(11): 1241-1247. |
Yan J W, Pan D A, Li B. Application of ultrasonic intensification in hydrometallurgy leaching process[J]. The Chinese Journal of Process Engineering, 2020, 20(11): 1241-1247. | |
119 | Xiao J, Yuan J, Tian Z, et al. Comparison of ultrasound-assisted and traditional caustic leaching of spent cathode carbon (SCC) from aluminum electrolysis[J]. Ultrasonics Sonochemistry, 2018, 40: 21-29. |
120 | Liu K, Xue J L, Luo W B. Effects of ultrasound on Al2O3 extraction rate during acid leaching process of coal fly ash[M]//EPD Congress 2014. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014: 251-258. |
121 | Luo W, Xue J L, Zhu J, et al. Extracting alumina from coal fly ash with concentrated sulfuric acid sintering and ultrasound aided leaching[M]// EPD Congress 2015. Switzer land: Springer Cham, 2015: 31-38. |
122 | Ju T Y, Jiang J G, Meng Y, et al. An investigation of the effect of ultrasonic waves on the efficiency of silicon extraction from coal fly ash[J]. Ultrasonics Sonochemistry, 2020, 60: 104765. |
123 | Kim J, Park S U. Simultaneous extraction of yttrium and neodymium from fly ash by two-step leaching process with aid of ultrasonic wave[J]. Kepco Journal on Electric Power and Energy, 2021, 7(1): 153-159. |
124 | Rahimi G, Rastegar S O, Rahmani F, et al. Correction: ultrasound-assisted leaching of vanadium from fly ash using lemon juice organic acids[J]. RSC Advances, 2020, 10(63): 38378. |
125 | 陈青明. 表面活性剂的化学结构和应用研究[J]. 低碳世界, 2021, 11(8): 227-228. |
Chen Q M. Study on chemical structure and application of surfactants[J]. Low Carbon World, 2021, 11(8): 227-228. | |
126 | 韩伟, 刘曦, 班颖. 表面活性剂辅助提取技术及其应用进展[J]. 机电信息, 2010(26): 12-15. |
Han W, Liu X, Ban Y. Surfactant-assisted extraction technology and its application progress[J]. Mechanical and Electrical Information, 2010(26): 12-15. | |
127 | 秦佳, 毛明发, 刘春霖, 等. 表面活性剂对铜矿石浸出的影响研究[J]. 矿冶工程, 2013, 33(5): 115-118. |
Qin J, Mao M F, Liu C L, et al. Study on effect of surfactant on copper ore leaching[J]. Mining and Metallurgical Engineering, 2013, 33(5): 115-118. | |
128 | Ai C M, Sun P P, Wu A X, et al. Accelerating leaching of copper ore with surfactant and the analysis of reaction kinetics[J]. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(3): 274-281. |
129 | 刘存成, 马家玉, 覃远航, 等. 表面活性剂对磷钾伴生矿中钾浸出的影响[J]. 武汉工程大学学报, 2017, 39(6): 536-540. |
Liu C C, Ma J Y, Qin Y H, et al. Effect of surfactants on leaching of potassium from phosphorus-potassium associated ore[J]. Journal of Wuhan Institute of Technology, 2017, 39(6): 536-540. | |
130 | 吴爱祥, 艾纯明, 王贻明, 等. 表面活性剂强化铜矿石浸出[J]. 北京科技大学学报, 2013, 35(6): 709-713. |
Wu A X, Ai C M, Wang Y M, et al. Surfactant accelerating leaching of copper ores[J]. Journal of University of Science and Technology Beijing, 2013, 35(6): 709-713. | |
131 | Liu Y Q, Tian B H, Xiao R L, et al. The bio-activation of pozzolanic activity of circulating fluidized-bed fly ash by Paenibacilllus mucilaginosus [J]. Advanced Powder Technology, 2022, 33(8): 103621. |
132 | Guo Y J, Teng Q, Yang Z, et al. Investigation on bio-desilication process of fly ash based on a self-screened strain of Bacillus amyloliquefaciens and its metabolites[J]. Journal of Biotechnology, 2021, 341: 146-154. |
133 | Park S, Liang Y. Bioleaching of trace elements and rare earth elements from coal fly ash[J]. International Journal of Coal Science & Technology, 2019, 6(1): 74-83. |
[1] | 赵泽森, 崔莉, 郭彦霞, 程芳琴. 粉煤灰中战略金属镓的提取与回收研究进展[J]. 化工学报, 2021, 72(6): 3239-3251. |
[2] | 崔莉,李莎莎,郭彦霞,张学里,程芳琴. 粉煤灰多元复杂体系锂资源提取的研究及发展[J]. 化工学报, 2020, 71(12): 5388-5399. |
[3] | 陈岚, 权宇珩, 李志勇, 岳鹏飞. 超声波辅助粉煤灰去除水中亚甲基蓝染料的动力学分析[J]. 化工学报, 2019, 70(7): 2708-2716. |
[4] | 熊黠, 刘作华, 谷德银, 邱发成, 王靓, 陶长元, 王运东. 刚柔组合桨强化粉煤灰酸浸搅拌槽内固液混沌混合[J]. 化工学报, 2019, 70(5): 1693-1701. |
[5] | 吴萍萍, 张泽武, 陈建定. 成纤性粉煤灰的低熔区组成及分布[J]. 化工学报, 2017, 68(5): 1767-1772. |
[6] | 毛艳丽, 罗世田, 吴俊峰, 刘彪, 康海彦, 朱慧杰, 王红强, 王巷文. 磁性粉煤灰空心微珠表面印迹聚合物选择性识别头孢氨苄[J]. 化工学报, 2016, 67(10): 4273-4281. |
[7] | 祁光霞, 雷雪飞, 孙方研, 孙应龙, 李磊, 袁超, 王邦达, 王毅. 粉煤灰源C-S-H吸附U(Ⅵ)性能及机理[J]. 化工学报, 2016, 67(10): 4255-4263. |
[8] | 刘康, 薛济来, 刘亮, 罗文博, 缪骏, 朱骏. 粉煤灰浓硫酸焙烧过程及其非等温动力学[J]. 化工学报, 2015, 66(4): 1337-1343. |
[9] | 金涌, 胡永琪, 胡山鹰, 王勇, 赵瑞红, 余海鹏, 李飞龙. 煤炭热力学高效和化学高价值利用新工艺[J]. 化工学报, 2014, 65(2): 381-389. |
[10] | 张开仕, 曾凤春, 谭超, 朱登磊. 聚合硅酸硫酸铁铝混凝剂的制备表征与混凝性能[J]. 化工学报, 2013, 64(8): 3070-3075. |
[11] | 陈彦广1,2,陆 佳1,2,韩洪晶1,2,陈 颖1,2,宋 华1,2. 粉煤灰作为廉价吸附剂控制污染物排放的研究进展[J]. 化工进展, 2013, 32(08): 1905-1913. |
[12] | 刘桂萍,祝 杏,刘长风. 菌体/粉煤灰复合吸附剂吸附酸性蓝[J]. 化工进展, 2013, 32(03): 687-691. |
[13] | 王宇飞1,2,严捍东2. 粉煤灰微珠-Ag复合颗粒的制备工艺和分析[J]. 化工进展, 2013, 32(03): 634-638. |
[14] | 李相国,陈嘉懿,马保国,黄赟,蹇守卫,茹晓红. 粒度分布对磷石膏-石灰-粉煤灰胶结材物理性能的影响[J]. 化工学报, 2012, 63(S1): 230-234. |
[15] | 石司默, 董长青, 覃吴, 王磊, 李文艳, 杨勇平. Fe2O3/粉煤灰载氧体化学链燃烧实验与机理研究[J]. 化工学报, 2012, 63(12): 4010-4018. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||