化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5388-5399.DOI: 10.11949/0438-1157.20200424
收稿日期:
2020-04-24
修回日期:
2020-07-01
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
程芳琴
作者简介:
崔莉(1985—),女,博士,副教授,基金资助:
CUI Li(),LI Shasha,GUO Yanxia,ZHANG Xueli,CHENG Fangqin()
Received:
2020-04-24
Revised:
2020-07-01
Online:
2020-12-05
Published:
2020-12-05
Contact:
CHENG Fangqin
摘要:
随着锂资源供需关系的紧张和需求量日益增大,从海水、废旧锂电池以及粉煤灰等低品位或者二次资源中回收锂受到重视。综述了煤及粉煤灰中锂资源的含量及分布、粉煤灰多元复杂体系中锂资源提取的技术现状,回顾了当前国内外从其他低品位资源中提锂的技术方法、材料和反应机制,分别从碱性、中性、酸性三种不同的提锂环境进行总结和阐述,对其用于粉煤灰提锂的可行性进行了评估,并对其存在问题和发展方向进行了分析和讨论,从其他低品位资源中提锂的方法可为粉煤灰提锂提供借鉴和参考。文章结尾对粉煤灰中锂资源的提取进行了展望,提出了粉煤灰中伴生资源协同提取的重要性和发展方向。
中图分类号:
崔莉,李莎莎,郭彦霞,张学里,程芳琴. 粉煤灰多元复杂体系锂资源提取的研究及发展[J]. 化工学报, 2020, 71(12): 5388-5399.
CUI Li,LI Shasha,GUO Yanxia,ZHANG Xueli,CHENG Fangqin. Research and development of lithium recovery from multi-component complex system of coal fly ash[J]. CIESC Journal, 2020, 71(12): 5388-5399.
电厂 | SiO2/ % | Al2O3/ % | Fe2O3/ % | CaO/ % | MgO/ % | Li/ (μg/g) | Ga/ (μg/g) |
---|---|---|---|---|---|---|---|
国投塔山电厂 | 36.70 | 35.70 | 1.95 | 8.21 | 0.21 | 271.0 | 68.0 |
山阴昱光电厂 | 42.10 | 34.70 | 5.10 | 4.54 | 0.71 | 99.7 | 48.6 |
保德电厂 | 38.50 | 43.00 | 2.06 | 4.25 | 0.72 | 364.1 | 77.5 |
太钢电厂 | 39.20 | 31.10 | 4.06 | 3.84 | 0.45 | 269.1 | 69.0 |
同煤热电厂 | 36.80 | 33.40 | 2.30 | 14.27 | 0.93 | 118.6 | 77.9 |
古交电厂 | 42.80 | 28.10 | 5.85 | 2.35 | 0.47 | 169.4 | 53.9 |
太原二电厂 | 45.60 | 31.00 | 6.15 | 3.13 | 0.44 | 210.9 | 39.5 |
表1 山西北部电厂飞灰的化学组成及含量
Table 1 Chemical composition and content of fly ash from power plants in northern Shanxi
电厂 | SiO2/ % | Al2O3/ % | Fe2O3/ % | CaO/ % | MgO/ % | Li/ (μg/g) | Ga/ (μg/g) |
---|---|---|---|---|---|---|---|
国投塔山电厂 | 36.70 | 35.70 | 1.95 | 8.21 | 0.21 | 271.0 | 68.0 |
山阴昱光电厂 | 42.10 | 34.70 | 5.10 | 4.54 | 0.71 | 99.7 | 48.6 |
保德电厂 | 38.50 | 43.00 | 2.06 | 4.25 | 0.72 | 364.1 | 77.5 |
太钢电厂 | 39.20 | 31.10 | 4.06 | 3.84 | 0.45 | 269.1 | 69.0 |
同煤热电厂 | 36.80 | 33.40 | 2.30 | 14.27 | 0.93 | 118.6 | 77.9 |
古交电厂 | 42.80 | 28.10 | 5.85 | 2.35 | 0.47 | 169.4 | 53.9 |
太原二电厂 | 45.60 | 31.00 | 6.15 | 3.13 | 0.44 | 210.9 | 39.5 |
1 | Zubi G, Dufo-López R, Carvalho M, et al. The lithium-ion battery: state of the art and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 292-308. |
2 | Swain B. Recovery and recycling of lithium: a review[J]. Separation & Purification Technology, 2017, 172: 388-403. |
3 | Song J F, Nghiem L D, Li X M, et al. Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook [J]. Environmental Science: Water Research & Technology, 2017, 3(4): 593-597. |
4 | Yang S X, Zhang F, Ding H P, et al. Lithium metal extraction from seawater[J]. Joule, 2018, 2(9): 1648-1651. |
5 | Jha M K, Kumari A, Jha A K, et al. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone[J]. Waste Management, 2013, 33(9): 1890-1897. |
6 | Qin S J, Zhao C L, Li Y H, et al. Review of coal as a promising source of lithium[J]. International Journal of Oil Gas and Coal Technology, 2015, 9(2): 215-229. |
7 | Ketris M P, Yudovich Y E. Estimations of Clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology, 2009, 78(2): 135-148. |
8 | Sun Y Z, Li Y H, Zhao C L, et al. Concentrations of lithium in Chinese coals[J]. Energy Exploration & Exploitation, 2010, 28(2): 97-104. |
9 | Dai S F, Li D, Chou C L, et al. Mineralogy and geochemistry of boehmite-rich coals: new insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China[J]. International Journal of Coal Geology, 2008, 74(3/4): 185-202. |
10 | Dai S F, Zhao L, Peng S P, et al. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China[J]. International Journal of Coal Geology, 2010, 81(4): 320-332. |
11 | 刘帮军, 林明月. 宁武煤田平朔矿区 9 号煤中锂的富集机理[J]. 地质与勘探, 2014, 50(6): 1070-1075. |
Liu B J, Lin M Y. Enrichment mechanism of lithium in coal seam No.9 of the Pingshuo mining district, Ningwu coalfield[J]. Geology and Exploration, 2014, 50(6): 1070-1075. | |
12 | 翟建平, 徐应成, 涂俊, 等. 粉煤灰中微量元素的分布机理及其环境意义[J]. 电力环境保护, 1997, 13(1): 38-42. |
Zhai J P, Xu Y C, Tu J, et al. Distribution mechanism of trace elements in fly ash and its environmental significance[J]. Electric Power Environmental Protection, 1997, 13(1): 38-42. | |
13 | Sun Y Z, Zhao C Y, Li Y H, et al. Li distribution and mode of occurrences in Li-bearing coal seam# 6 from the Guanbanwusu Mine, Inner Mongolia, Northern China[J]. Energy Exploration & Exploitation, 2012, 30(1): 109-130. |
14 | 河北工程大学. 一种从粉煤灰中综合提取铝和锂的方法: 102923742A[P]. 2013-02-13. |
Hebei University of Engineering. Method for comprehensively extracting aluminum and lithium from fly ash: 102923742A[P]. 2013-02-13. | |
15 | 河北工程大学. 一种从富锂粉煤灰碱法母液中提取锂的方法: 109721081A[P]. 2019-05-07. |
Hebei University of Engineering. Method for extracting lithium from mother liquor of lithium-rich fly ash alkali method: 109721081A[P]. 2019-05-07. | |
16 | 中国科学院过程工程研究所. 一种粉煤灰中铝硅锂镓联合法协同提取的方法: 107758714A [P]. 2018-03-06. |
Institute of Process Engineering, Chinese Academy of Sciences. Method for synergistically extracting aluminum, silicon, lithium and gallium in fly ash: 107758714A[P]. 2018-03-06. | |
17 | 华东理工大学. 一种吸附法从粉煤灰中提锂的方法: 110592383A[P]. 2019-12-20. |
East China University of Science and Technology. Method for extracting lithium from fly ash by adsorption method: 110592383A[P]. 2019-12-20. | |
18 | 中国神华能源股份有限公司. 从粉煤灰制取碳酸锂的方法: 103101935A[P]. 2013-05-15. |
China Shenhua Energy Company Limited. Method for preparing lithium carbonate from fly ash: 103101935A[P]. 2013-05-15. | |
19 | 中国科学院青海盐湖研究所. 从粉煤灰中提取锂的方法: 108265176A[P]. 2018-07-10. |
Qinghai Institute of Salt Lakes, Chinese Academy of Sciences. Method of extracting lithium from fly ash: 108265176A[P]. 2018-07-10. | |
20 | Weng D, Duan H Y, Hou Y C, et al. Introduction of manganese based lithium-ion sieve—a review[J]. Progress in Natural Science: Materials International, 2020, 30(2): 139-152. |
21 | 孙淑英, 张钦辉, 于建国. 纳米 MnO2离子筛的锂吸附性能[J]. 化工学报, 2007, 58(7): 1757-1761. |
Sun S Y, Zhang Q H, Yu J G. Lithium adsorption on nanocrystalline MnO2 ion sieve[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(7): 1757-1761. | |
22 | Sato K, Poojary D M, Clearfield A, et al. The surface structure of the proton-exchanged lithium manganese oxide spinels and their lithium-ion sieve properties[J]. Journal of Solid State Chemistry, 1997, 131(1): 84-93. |
23 | Yang X J, Kanoh H, Tang W P, et al. Synthesis of Li1.33Mn1.67O4 spinels with different morphologies and their ion adsorptivities after delithiation[J]. Journal of Materials Chemistry, 2000, 10(8): 1903-1909. |
24 | Liu L F, Zhang H W, Zhang Y S, et al. Lithium extraction from seawater by manganese oxide ion sieve MnO2·0.5H2O[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 468: 280-284. |
25 | 陆红岩, 杨立新, 邬赛祥, 等. 三维有序大孔尖晶石型 Li1.6Mn1.6O4的制备及锂离子筛吸附特性[J]. 高等学校化学学报, 2011, 32(10): 2268-2273. |
Lu H Y, Yang L X, Wu S X, et al. Preparation of three-dimensionally ordered macroporous spinel Li1.6Mn1.6O4 and adsorption characteristics of lithium ion-sieve[J]. Chemical Journal of Chinese Universities, 2011, 32(10): 2268-2273. | |
26 | Xiao J L, Nie X Y, Sun S Y, et al. Lithium ion adsorption–desorption properties on spinel Li4Mn5O12 and pH-dependent ion-exchange model[J]. Advanced Powder Technology, 2015, 26(2): 589-594. |
27 | 许惠, 陈昌国, 宋应华. 锂离子筛前体Li4Mn5O12的制备及性能研究[J]. 无机材料学报, 2013, 28(7): 720-726. |
Xu H, Chen C G, Song Y H. Synthesis and properties of lithium ion-sieve precursor Li4Mn5O12[J]. Journal of Inorganic Materials, 2013, 28(7): 720-726. | |
28 | 孙淑英, 张钦辉, 于建国. 低维纳米立方相Li4Mn5O12的制备及锂吸附性能[J]. 无机材料学报, 2010, 25(6): 626-630. |
Sun S Y, Zhang Q H, Yu J G. Preparation and lithium adsorption properties of low-dimensional cubic Li4Mn5O12 nanostructure[J]. Journal of Inorganic Materials, 2010, 25(6): 626-630. | |
29 | Gu D L, Sun W J, Han G F, et al. Lithium ion sieve synthesized via an improved solid state method and adsorption performance for West Taijinar Salt Lake brine[J]. Chemical Engineering Journal, 2018, 350: 474-483. |
30 | Shi X C, Zhang Z B, Zhou D F, et al. Synthesis of Li+ adsorbent (H2TiO3) and its adsorption properties[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(1): 253-259. |
31 | Chitrakar R, Makita Y, Ooi K, et al. Lithium recovery from salt lake brine by H2TiO3 [J]. Dalton Transactions, 2014, 43(23): 8933-8939. |
32 | 李超, 肖伽励, 孙淑英, 等. 球形离子筛吸附剂的制备及其锂吸附性能评价[J]. 化工学报, 2014, 65(1): 220-226. |
Li C, Xiao J L, Sun S Y, et al. Preparation and lithium adsorption evaluation for spherical ion-sieve granulated by agarose[J]. CIESC Journal, 2014, 65(1): 220-226. | |
33 | 房超. 钛系复合型锂离子筛的制备及应用研究[D]. 青岛: 青岛科技大学, 2017. |
Fang C. Study on preparation and application of titanium composite lithium ion sieve[D]. Qingdao: Qingdao University of Science and Technology, 2017. | |
34 | 尹世豪. 锰系锂离子筛钛掺杂改性工艺及其性能研究[D]. 长沙: 中南大学, 2014. |
Yin S H. Research on the process and properties of titanium doped manganate lithium ion-sieve[D]. Changsha: Central South University, 2014. | |
35 | Qian F R, Zhao B, Guo M, et al. Enhancing the Li+ adsorption and anti-dissolution properties of Li1.6Mn1.6O4 with Fe, Co doped [J]. Hydrometallurgy, 2020, 193: 105291. |
36 | Chitrakar R, Makita Y, Ooi K, et al. Synthesis of iron-doped manganese oxides with an ion-sieve property: lithium adsorption from bolivian brine[J]. Industrial & Engineering Chemistry Research, 2014, 53(9): 3682-3688. |
37 | Xiao G P, Tong K F, Zhou L S, et al. Adsorption and desorption behavior of lithium ion in spherical PVC–MnO2 ion sieve[J]. Industrial & Engineering Chemistry Research, 2012, 51(33): 10921-10929. |
38 | Park M J, Nisola G M, Beltran A B, et al. Recyclable composite nanofiber adsorbent for Li+ recovery from seawater desalination retentate[J]. Chemical Engineering Journal, 2014, 254: 73-81. |
39 | Nisola G M, Limjuco L A, Vivas E L, et al. Macroporous flexible polyvinyl alcohol lithium adsorbent foam composite prepared via surfactant blending and cryo-desiccation[J]. Chemical Engineering Journal, 2015, 280: 536-548. |
40 | Park M J, Nisola G M, Vivas E L, et al. Mixed matrix nanofiber as a flow-through membrane adsorber for continuous Li+ recovery from seawater [J]. Journal of Membrane Science, 2016, 510: 141-154. |
41 | Li X W, Chao Y H, Chen L L, et al. Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources[J]. Chemical Engineering Journal, 2020, 392: 123731. |
42 | Zhao Q, Gao J M, Guo Y X, et al. Facile synthesis of magnetically recyclable Fe-doped lithium ion sieve and its Li adsorption performance[J]. Chemistry Letters, 2018, 47(10): 1308-1310. |
43 | Torrejos R E C, Nisola G M, Song H S, et al. Liquid-liquid extraction of lithium using lipophilic dibenzo-14-crown-4 ether carboxylic acid in hydrophobic room temperature ionic liquid[J]. Hydrometallurgy, 2016, 164: 362-371. |
44 | Habata Y, Ikeda M, Akabori S. Lithium ion selective dibenzo-14-crown-4 possessing a phosphoric acid functional group as a pendant[J]. Tetrahedron Letters, 1992, 33(22): 3157-3160. |
45 | Torrejos R E C, Nisola G M, Park M J, et al. Synthesis and characterization of multi-walled carbon nanotubes-supported dibenzo-14-crown-4 ether with proton ionizable carboxyl sidearm as Li+ adsorbents[J]. Chemical Engineering Journal, 2015, 264: 89-98. |
46 | Lu J, Qin Y Y, Zhang Q, et al. Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone[J]. Applied Surface Science, 2018, 427: 931-941. |
47 | Bartsch R A, Yang I W, Jeon E G, et al. Selective transport of alkali metal cations in solvent extraction by proton-ionizable dibenzocrown ethers[J]. Journal of Coordination Chemistry, 1992, 27(1/2/3): 75-85. |
48 | Pranolo Y, Zhu Z, Cheng C Y. Separation of lithium from sodium in chloride solutions using SSX systems with LIX 54 and Cyanex 923[J]. Hydrometallurgy, 2015, 154: 33-39. |
49 | Healy T V. Synergism in the solvent extraction of alkali metal ions by thenoyl trifluoracetone[J]. Journal of Inorganic and Nuclear Chemistry, 1968, 30(4): 1025-1036. |
50 | Seeley F G, Baldwin W H. Extraction of lithium from neutral salt solutions with fluorinated β-diketones[J]. Journal of Inorganic and Nuclear Chemistry, 1976, 38(5): 1049-1052. |
51 | Kinugasa T, Nishibara H, Murao Y, et al. Equilibrium and kinetics of lithium extraction by a mixture of LIX54 and TOPO[J]. Journal of Chemical Engineering of Japan, 1994, 27(6): 815-818. |
52 | Ishimori K, Iura H, Ohashi K. Effect of 1, 10-phenanthroline on the extraction and separation of lithium (I), sodium (I) and potassium (I) with thenoyltrifluoroacetone[J]. Analytica Chimica Acta, 2002, 454(2): 241-247. |
53 | Kim Y S, In G, Choi J M. Chemical equilibrium and synergism for solvent extraction of trace lithium with thenoyltrifluoroacetone in the presence of trioctylphosphine oxide[J]. Bulletin of the Korean Chemical Society, 2003, 24(10): 1495-1500. |
54 | Harvianto G R, Kim S H, Ju C S. Solvent extraction and stripping of lithium ion from aqueous solution and its application to seawater[J]. Rare Metals, 2016, 35(12): 948-953. |
55 | Swain B. Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(10): 2549-2562. |
56 | 严金英, 陈耀焕, 叶伟贞, 等. 碱金属萃取化学研究(Ⅰ): 苏丹Ⅰ中性协萃体系选择性萃取锂[J]. 有机化学, 1981, (1): 28-33. |
Yan J Y, Chen Y H, Ye W Z, et al. Studies on the extraction chemistry of alkali metals(Ⅰ): Selective extraction of lithium with Sudan I and neutral extractant synergistic extraction system [J]. Journal of Organic Chemistry, 1981, (1): 28-33. | |
57 | 陈耀焕, 严金英, 李永坤, 等. 碱金属萃取化学研究(Ⅱ): 苏丹 Ⅰ 中性协萃体系萃锂机理[J]. 有机化学, 1982, (4): 257-262. |
Chen Y H, Yan J Y, Li Y K, et al. Studies on the extraction chemistry of alkali metals(Ⅱ): The mechanism of the extraction of lithium by the neutral synergistic system of Sudan Ⅰ[J]. Journal of Organic Chemistry, 1982, (4): 257-262. | |
58 | 青海锂业有限公司. 一种利用盐湖卤水制取电池级碳酸锂的方法: 102976367A[P]. 2013-03-20. |
Qinghai Lithium Industry Company Limited. A method for preparing battery-grade lithium carbonate by using salt lake brine: 102976367A[P]. 2013-03-20. | |
59 | Wen X M, Ma P H, Zhu C L, et al. Preliminary study on recovering lithium chloride from lithium-containing waters by nanofiltration[J]. Separation and Purification Technology, 2006, 49(3): 230-236. |
60 | Somrani A, Hamzaoui A H, Pontie M. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO)[J]. Desalination, 2013, 317: 184-192. |
61 | 卢健. 功能型离子印迹纳米复合膜的构建及其选择性分离性能和机理研究[D]. 吉林: 吉林师范大学, 2018. |
Lu J. Construction of functional ion-imprinted nanocomposite membranes for the selective separation and mechanism research[D]. Jilin: Jilin Normal University, 2018. | |
62 | 苑青青. 溶胶凝胶法制备锂离子印迹杯芳烃乙酸聚合物对浓海水Li+的动态吸附性能研究[D]. 杭州: 浙江工业大学, 2015. |
Yuan Q Q. The dynamic adsorption of Li+ from seawater by lithium ion imprinted calixarene polymers using sol-gel method[D]. Hangzhou: Zhejiang University of Technology, 2015. | |
63 | Cui J Y, Zhang Y F, Wang Y, et al. Fabrication of lithium ion imprinted hybrid membranes with antifouling property for selective recovery of lithium[J]. New Journal of Chemistry, 2018, 42(1): 118-128. |
64 | Huang Y, Wang R. An efficient lithium ion imprinted adsorbent using multi-wall carbon nanotubes as support to recover lithium from water[J]. Journal of Cleaner Production, 2018, 205: 201-209. |
65 | Shi C L, Jing Y, Xiao J, et al. Liquid-liquid extraction of lithium using novel phosphonium ionic liquid as an extractant[J]. Hydrometallurgy, 2017, 169: 314-320. |
66 | Shi C, Jing Y, Xiao J, et al. Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents[J]. Separation and Purification Technology, 2017, 172: 473-479. |
67 | Tsuchiya S, Nakatani Y, Ibrahim R, et al. Highly efficient separation of lithium chloride from seawater[J]. Journal of the American Chemical Society, 2002, 124(18): 4936-4937. |
68 | Li E Z, Kang J, Ye P, et al. A prospective material for the highly selective extraction of lithium ions based on a photochromic crowned spirobenzopyran[J]. Journal of Materials Chemistry B, 2019, 7(6): 903-907. |
69 | 黄师强, 崔荣旦, 张淑珍, 等. 一种从含锂卤水中提取无水氯化锂的方法: 87103431 [P]. 1987-05-07. |
Huang S Q, Cui R D, Zhang S Z, et al. A method for extracting anhydrous lithium chloride from lithium-containing brine: 87103431[P]. 1987-05-07. | |
70 | Zhou Z Y, Qin W, Fei W Y. Extraction equilibria of lithium with tributyl phosphate in three diluents[J]. Journal of Chemical & Engineering Data, 2011, 56(9): 3518-3522. |
71 | 朱慎林, 朴香兰, 缑泽明. 中性磷类萃取剂从卤水中萃取锂的研究[J]. 清华大学学报(自然科学版), 2000, 40(10): 47-50. |
Zhu S L, Piao X L, Gou Z M. Extraction of lithium from brine with neutral organophosphorous solvents[J]. Journal of Tsinghua University (Science and Technology), 2000, 40(10): 47-50. | |
72 | Zhou Z Y, Liang S K, Qin W, et al. Extraction equilibria of lithium with tributyl phosphate, diisobutyl ketone, acetophenone, methyl isobutyl ketone, and 2-heptanone in kerosene and FeCl3[J]. Industrial & Engineering Chemistry Research, 2013, 52(23): 7912-7917. |
73 | Shi D, Cui B, Li L J, et al. Lithium extraction from low-grade salt lake brine with ultrahigh Mg/Li ratio using TBP-kerosene-FeCl3 system[J]. Separation and Purification Technology, 2019, 211: 303-309. |
74 | Zhou Z Y, Qin W, Liang S K, et al. Recovery of lithium using tributyl phosphate in methyl isobutyl ketone and FeCl3[J]. Industrial & Engineering Chemistry Research, 2012, 51(39): 12926-12932. |
75 | Zhou Z Y, Qin W, Liu Y, et al. Extraction equilibria of lithium with tributyl phosphate in kerosene and FeCl3[J]. Journal of Chemical & Engineering Data, 2011, 57(1): 82-86. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[4] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[5] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[6] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[7] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[8] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[9] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[10] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[11] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[12] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[13] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[14] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[15] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||