化工学报 ›› 2023, Vol. 74 ›› Issue (2): 807-817.DOI: 10.11949/0438-1157.20221430
收稿日期:
2022-11-01
修回日期:
2022-12-12
出版日期:
2023-02-05
发布日期:
2023-03-21
通讯作者:
杨思宇
作者简介:
史克年(1998—),男,硕士研究生,202020123528@mail.scut.edu.cn
基金资助:
Kenian SHI(), Jingyuan ZHENG, Yu QIAN, Siyu YANG()
Received:
2022-11-01
Revised:
2022-12-12
Online:
2023-02-05
Published:
2023-03-21
Contact:
Siyu YANG
摘要:
现有的解决蒸汽动力系统蒸汽需求不确定性的优化方法有随机规划和鲁棒优化,但二者不能同时兼顾稳定性和经济性。本文提出一种基于马尔可夫链的两阶段随机规划去解决这个问题。第一阶段基于空间距离表达划分不确定变量,通过聚类算法划分成不同工况。第二阶段基于状态切换概率构建马尔可夫链,通过场景生成和削减的方法预测蒸汽的需求值。以某煤制气企业蒸汽动力系统为实例建立相应的优化模型,将预测的蒸汽值带入优化模型求解,得出的最优操作方案与随机规划和鲁棒优化法进行对比和分析。结果表明,本优化方法综合了随机规划经济性高和鲁棒优化稳定性高的优点,稳定性和经济性都介于随机规划和鲁棒优化的中间,为解决蒸汽动力系统的不确定优化问题提供了新思路。
中图分类号:
史克年, 郑景元, 钱宇, 杨思宇. 基于马尔可夫链的蒸汽动力系统两阶段随机规划[J]. 化工学报, 2023, 74(2): 807-817.
Kenian SHI, Jingyuan ZHENG, Yu QIAN, Siyu YANG. Two-stage stochastic programming of steam power system based on Markov chain[J]. CIESC Journal, 2023, 74(2): 807-817.
工况 | 时长/h | 概率 |
---|---|---|
合计 | 8784 | 1.000 |
0 | 483 | 0.055 |
1 | 535 | 0.060 |
2 | 2153 | 0.240 |
3 | 1743 | 0.200 |
4 | 3302 | 0.380 |
5 | 568 | 0.065 |
表1 各工况分布情况
Table 1 Distribution of each working condition
工况 | 时长/h | 概率 |
---|---|---|
合计 | 8784 | 1.000 |
0 | 483 | 0.055 |
1 | 535 | 0.060 |
2 | 2153 | 0.240 |
3 | 1743 | 0.200 |
4 | 3302 | 0.380 |
5 | 568 | 0.065 |
蒸汽等级 | 稳定性/% | MAPE/% | RMSE |
---|---|---|---|
8.8 MPa | 87.1 | 1.62 | 7.25 |
5.5 MPa | 79.4 | 3.79 | 15.93 |
2.0 MPa | 76.8 | 6.83 | 16.23 |
表2 各蒸汽评价指标
Table 2 Each steam evaluation index
蒸汽等级 | 稳定性/% | MAPE/% | RMSE |
---|---|---|---|
8.8 MPa | 87.1 | 1.62 | 7.25 |
5.5 MPa | 79.4 | 3.79 | 15.93 |
2.0 MPa | 76.8 | 6.83 | 16.23 |
Boilers | Maximum load / (t/h) | Minimum load / (t/h) | Start-stop cost/CNY | Depreciation cost/(CNY/h) |
---|---|---|---|---|
B1—B4 | 470 | 330 | 105 | 150 |
表3 锅炉参数
Table 3 Parameters of boilers
Boilers | Maximum load / (t/h) | Minimum load / (t/h) | Start-stop cost/CNY | Depreciation cost/(CNY/h) |
---|---|---|---|---|
B1—B4 | 470 | 330 | 105 | 150 |
Turbines | Rated power/MW | Maximum admission flow/(t/h) | Maximum extraction flow/(t/h) | Cost/(CNY/h) | ||
---|---|---|---|---|---|---|
First | Second | Start-stop | Depreciation | |||
CN100T | 112 | 500 | 45 | 50 | 105 | 400 |
CB30T | 33 | 500 | 25 | 25 | 105 | 160 |
表4 汽轮机参数
Table 4 Parameters of turbines
Turbines | Rated power/MW | Maximum admission flow/(t/h) | Maximum extraction flow/(t/h) | Cost/(CNY/h) | ||
---|---|---|---|---|---|---|
First | Second | Start-stop | Depreciation | |||
CN100T | 112 | 500 | 45 | 50 | 105 | 400 |
CB30T | 33 | 500 | 25 | 25 | 105 | 160 |
Method | Coal consumption/(t/h) | Water consumption/(t/h) |
---|---|---|
before optimization | 270.39 | 1094.84 |
this paper optimization | 263.49 | 1053.03 |
robust optimization | 268.42 | 1084.60 |
stochastic programming | 262.25 | 1044.19 |
表6 各优化方法优化前后的资源消耗
Table 6 Resource consumption of each optimization method before and after optimization
Method | Coal consumption/(t/h) | Water consumption/(t/h) |
---|---|---|
before optimization | 270.39 | 1094.84 |
this paper optimization | 263.49 | 1053.03 |
robust optimization | 268.42 | 1084.60 |
stochastic programming | 262.25 | 1044.19 |
Item | Cost/(104 CNY) | |||
---|---|---|---|---|
Before optimization | This paper optimization | Robust optimization | Stochastic programming | |
coal | 5871 | 5721 | 5828 | 5694 |
water | 867 | 834 | 859 | 827 |
purchased electricity | 0 | 0 | 0 | 0 |
purchased steam | 0 | 0 | 0 | 0 |
the total cost | 6738 | 6555 | 6687 | 6521 |
cost saving | — | 183 | 51 | 217 |
表7 各优化方法优化前后的各项费用
Table 7 Cost of each optimization method before and after optimization
Item | Cost/(104 CNY) | |||
---|---|---|---|---|
Before optimization | This paper optimization | Robust optimization | Stochastic programming | |
coal | 5871 | 5721 | 5828 | 5694 |
water | 867 | 834 | 859 | 827 |
purchased electricity | 0 | 0 | 0 | 0 |
purchased steam | 0 | 0 | 0 | 0 |
the total cost | 6738 | 6555 | 6687 | 6521 |
cost saving | — | 183 | 51 | 217 |
1 | 徐乐, 陈颖, 罗向龙. 考虑减排措施的蒸汽动力系统结构优选[J]. 热科学与技术, 2011, 10(4): 371-376. |
Xu L, Chen Y, Luo X L. Structure optimization of steam power system with emission reduction technology concerns[J]. Journal of Thermal Science and Technology, 2011, 10(4): 371-376. | |
2 | 李帅, 姜晓滨, 贺高红, 等. 蒸汽动力系统柔性设计和多目标优化研究进展[J]. 化工进展, 2017, 36(6): 1989-1996. |
Li S, Jiang X B, He G H, et al. Research progress for flexible design and multi-objective optimization of steam power network[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 1989-1996. | |
3 | 盖丽梅, 孙力, 刘畅, 等. 基于带补偿随机规划的蒸汽动力系统优化设计[J]. 化工学报, 2014, 65(11): 4509-4516. |
Gai L M, Sun L, Liu C, et al. Steam power system optimization design based on stochastic programming with recourse[J]. CIESC Journal, 2014, 65(11): 4509-4516. | |
4 | 李晖, 孙力, 贺高红. 考虑不确定汽电需求的蒸汽动力系统优化设计[J]. 化工学报, 2013, 64(1): 318-325. |
Li H, Sun L, He G H. Design and optimization of steam power system with uncertain steam and power demands[J]. CIESC Journal, 2013, 64(1): 318-325. | |
5 | 罗向龙, 陈颖, 华贲. 参数不确定性条件下蒸汽动力系统的运行优化[J]. 石油学报(石油加工), 2009, 25(2): 233-240. |
Luo X L, Chen Y, Hua B. Operational planning optimization of utility system under parameters uncertainty[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2009, 25(2):233-240. | |
6 | Alipour M. A multi-follower bilevel stochastic programming approach for energy management of combined heat and power micro-grids[J]. Energy, 2018, 149: 135-146. |
7 | Qian Q M, Lin H, He C, et al. Sustainable retrofit of petrochemical energy systems under multiple uncertainties using the stochastic optimization method[J]. Computers & Chemical Engineering, 2021, 151: 107374. |
8 | Maurovich-Horvat L, Rocha P, Siddiqui A S. Optimal operation of combined heat and power under uncertainty and risk aversion[J]. Energy and Buildings, 2016, 110: 415-425. |
9 | Saeedi M. Robust optimization based optimal chiller loading under cooling demand uncertainty[J]. Applied Thermal Engineering, 2019, 148: 1081-1091. |
10 | Verástegui F, Lorca Á, Olivares D E, et al. An adaptive robust optimization model for power systems planning with operational uncertainty[J]. IEEE Transactions on Power Systems, 2019, 34(6): 4606-4616. |
11 | Shen F, Zhao L, Du W, et al. Data-driven stochastic robust optimization for industrial energy system considering renewable energy penetration[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(11): 3690-3703. |
12 | Lence B, Moosavian N, Daliri H. Fuzzy programming approach for multiobjective optimization of water distribution systems[J]. Journal of Water Resources Planning and Management, 2017, 143: 04017020. |
13 | Singh A. Managing the uncertainty problems of municipal solid waste disposal[J]. Journal of Environmental Management, 2019, 240: 259-265. |
14 | 盖丽梅. 基于随机规划的不确定蒸汽动力系统优化设计[D]. 大连: 大连理工大学, 2015. |
Gai L M. Optimal design of uncertain steam power system based on stochastic programming[D]. Dalian: Dalian University of Technology, 2015. | |
15 | Sun L, Gai L M, Smith R, et al. Site utility system optimization with operation adjustment under uncertainty[J]. Applied Energy, 2017, 186: 450-456. |
16 | Velasco-Garcia P. Utility systems operation: optimisation-based decision making[J]. Applied Thermal Engineering, 2011, 31(16): 3196-3205. |
17 | Xie Y L, Huang G H, Li W, et al. An inexact two-stage stochastic programming model for water resources management in Nansihu Lake Basin, China[J]. Journal of Environmental Management, 2013, 127: 188-205. |
18 | Niu T, Yin H C, Feng E M. An interval two-stage robust stochastic programming approach for steam power systems design and operation optimization under complex uncertainties[J]. Chemical Engineering Science, 2022, 253: 117533. |
19 | Shen F F, Zhao L, Du W L, et al. Large-scale industrial energy systems optimization under uncertainty: a data-driven robust optimization approach[J]. Applied Energy, 2020, 259: 114199. |
20 | Shen F, Zhao L, Wang M, et al. Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty[J]. Applied Energy, 2022, 307: 118148. |
21 | Ning C, You F. A data‐driven multistage adaptive robust optimization framework for planning and scheduling under uncertainty[J]. AIChE Journal, 2017, 63(10): 4343-4369. |
22 | 廖祖维, 宣吉, 荣冈, 等. 基于模糊规划的石化企业蒸汽动力系统调度优化[J]. 浙江大学学报(工学版), 2011, 45(4): 621-626, 694. |
Liao Z W, Xuan J, Rong G, et al. Fuzzy programming based scheduling of steam power system in petrochemical complex[J]. Journal of Zhejiang University (Engineering Science), 2011, 45(4): 621-626, 694. | |
23 | Nie S, Huang C Z, Huang G H, et al. Planning renewable energy in electric power system for sustainable development under uncertainty—a case study of Beijing[J]. Applied Energy, 2016, 162: 772-786. |
24 | Verma S M, Reddy V, Verma K, et al. Markov models based short term forecasting of wind speed for estimating day-ahead wind power[C]//2018 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS). Chennai, India IEEE, 2018: 31-35. |
25 | Yang X Y, Ma X, Kang N, et al. Probability interval prediction of wind power based on KDE method with rough sets and weighted Markov chain[J]. IEEE Access, 2018, 6: 51556-51565. |
26 | Sinaga K P, Yang M S. Unsupervised K-means clustering algorithm[J]. IEEE Access, 2020, 8: 80716-80727. |
27 | Balzter H. Markov chain models for vegetation dynamics[J]. Ecological Modelling, 2000, 126(2/3): 139-154. |
28 | Logofet D O. The mathematics of Markov models: what Markov chains can really predict in forest successions[J]. Ecological Modelling, 2000, 126(2/3): 285-298. |
29 | Lee D, Baldick R. Load and wind power scenario generation through the generalized dynamic factor model[J]. IEEE Transactions on Power Systems, 2017, 32(1): 400-410. |
30 | Yuan X H, Ji B, Zhang S Q, et al. An improved artificial physical optimization algorithm for dynamic dispatch of generators with valve-point effects and wind power[J]. Energy Conversion and Management, 2014, 82: 92-105. |
31 | Wu L, Shahidehpour M, Li T. Stochastic security-constrained unit commitment[J]. IEEE Transactions on Power Systems, 2007, 22(2): 800-811. |
32 | Dupačová J, Gröwe-Kuska N, Römisch W. Scenario reduction in stochastic programming[J]. Mathematical Programming, 2003, 95(3): 493-511. |
33 | Chen Z P. Scenario tree reduction methods through clustering nodes[J]. Computers & Chemical Engineering, 2018, 109: 96-111. |
[1] | 曾帅, 史智俊, 王鹏, 张国磊, 孙宝芝, 阙晨宇, 马彪, 李健. 舰用蒸汽动力系统主汽压力控制方法仿真[J]. 化工学报, 2016, 67(S1): 334-340. |
[2] | 张鹏飞, 赵浩, 荣冈, 冯毅萍. 考虑生产成本和环境成本的蒸汽动力系统多目标运行优化[J]. 化工学报, 2016, 67(3): 715-723. |
[3] | 刘畅, 孙力, 贺高红, 盖丽梅. 基于不确定蒸汽需求和设备故障的锅炉系统随机规划设计[J]. 化工学报, 2014, 65(9): 3512-3518. |
[4] | 刘畅, 孙力, 贺高红, 盖丽梅. 基于不确定蒸汽需求和设备故障的锅炉系统随机规划设计[J]. 化工学报, 2014, 65(9): 0-0. |
[5] | 盖丽梅, 孙力, 刘畅, 贺高红. 基于带补偿随机规划的蒸汽动力系统优化设计[J]. 化工学报, 2014, 65(11): 4509-4516. |
[6] | 李晖, 孙力, 贺高红. 考虑不确定汽电需求的蒸汽动力系统优化设计[J]. 化工学报, 2013, 64(1): 318-325. |
[7] | 王卓峰, 敦剑, 卢红波, 耿军, 冯霄. 工业汽轮机的经济出力分界点[J]. 化工学报, 2012, 63(11): 3579-3584. |
[8] | 罗向龙;华贲. 石化企业蒸汽动力系统柔性设计 [J]. CIESC Journal, 2009, 60(4): 936-944. |
[9] | 罗向龙, 华贲. 蒸汽动力系统设计与综合优化研究综述 [J]. 化工学报, 2009, 60(10): 2411-2419. |
[10] | 戴文智, 尹洪超, 池晓. 改进PSO算法在蒸汽动力系统多周期运行优化中的应用 [J]. 化工学报, 2009, 60(1): 112-117. |
[11] | 倪建军;郭庆华;梁钦锋;于遵宏;于广锁. 撞击流气化炉内颗粒停留时间分布的随机模拟 [J]. CIESC Journal, 2008, 59(3): 567-573. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||