化工学报 ›› 2023, Vol. 74 ›› Issue (6): 2565-2579.DOI: 10.11949/0438-1157.20230210
收稿日期:
2023-03-09
修回日期:
2023-04-10
出版日期:
2023-06-05
发布日期:
2023-07-27
通讯作者:
李双喜
作者简介:
毕恩哲(2000—),男,硕士研究生,buctbez@126.com
基金资助:
Enzhe BI(), Shuangxi LI(), Lianxiang SHA, Dengyu LIU, Kaifang CHEN
Received:
2023-03-09
Revised:
2023-04-10
Online:
2023-06-05
Published:
2023-07-27
Contact:
Shuangxi LI
摘要:
针对航空发动机涨圈密封在高温工况下磨损严重的特性,提出一种动环端面开设螺旋槽的动压涨圈密封。综合考虑切口对主密封端面流动的相互影响,建立流固热耦合数值分析模型,分析动压涨圈密封的密封性能,采用响应面法对静环结构参数进行多目标优化分析,试验验证模型的准确性。研究结果表明:动压涨圈的密封性能主要受切口间隙影响,而减磨性能主要受轴向厚度和径向宽度影响;切口间隙的增大将导致密封性能和减磨性能的下降,但轴向厚度和径向宽度的增加可有效减弱切口间隙的不利影响。优化参数组合为切口间隙0.2 mm、轴向厚度13 mm、径向宽度6.5 mm,优化后泄漏率降低26.73%,密封性能、减磨性能得到明显提升。
中图分类号:
毕恩哲, 李双喜, 沙廉翔, 刘登宇, 陈凯放. 高温动压涨圈密封结构参数多目标优化分析[J]. 化工学报, 2023, 74(6): 2565-2579.
Enzhe BI, Shuangxi LI, Lianxiang SHA, Dengyu LIU, Kaifang CHEN. Multi-objective optimization analysis of high temperature dynamic pressure split ring seal parameters[J]. CIESC Journal, 2023, 74(6): 2565-2579.
结构参数 | 数值 | 结构参数 | 数值 |
---|---|---|---|
静环外半径rb/mm | 40.0 | 动环外半径rro/mm | 39.0 |
静环内半径rei/mm | 33.0 | 动环内半径rri/mm | 30.0 |
密封端面外半径reo/mm | 39.0 | 动环轴向厚度Ls/mm | 6.0 |
静环轴向厚度Le/mm | 6.0 (4.0~14.0) | 螺旋槽槽根半径re/mm | 39.7 |
静环凸台高度Lb/mm | 0.5 | 螺旋角θ/(°) | 15 |
静环径向宽度Hs/mm | 6.0 (4.5~7.0) | 螺旋槽槽深hg/μm | 6.0 |
静环切口间隙δa/mm | 0.3 (0.2~1.2) | 槽数N/个 | 12 |
表1 动压式涨圈密封结构尺寸
Table 1 Structure size of dynamic pressure expansion ring seal
结构参数 | 数值 | 结构参数 | 数值 |
---|---|---|---|
静环外半径rb/mm | 40.0 | 动环外半径rro/mm | 39.0 |
静环内半径rei/mm | 33.0 | 动环内半径rri/mm | 30.0 |
密封端面外半径reo/mm | 39.0 | 动环轴向厚度Ls/mm | 6.0 |
静环轴向厚度Le/mm | 6.0 (4.0~14.0) | 螺旋槽槽根半径re/mm | 39.7 |
静环凸台高度Lb/mm | 0.5 | 螺旋角θ/(°) | 15 |
静环径向宽度Hs/mm | 6.0 (4.5~7.0) | 螺旋槽槽深hg/μm | 6.0 |
静环切口间隙δa/mm | 0.3 (0.2~1.2) | 槽数N/个 | 12 |
材料参数 | 静环M106D | 动环GH3625 |
---|---|---|
弹性模量E/GPa | 15 | 205 |
泊松比ν | 0.3 | 0.3 |
热导率k/(W·m-1·K-1) | 140 | 13.2 |
比热容Cp /(J·kg-1·K-1) | 690 | 625 |
热膨胀系数α/(10-6 K-1) | 5.0 | 17.2 |
密度ρ/(kg·m-3) | 2230 | 8400 |
表2 涨圈密封环材料参数
Table 2 Material parameters of sealing ring with rising ring
材料参数 | 静环M106D | 动环GH3625 |
---|---|---|
弹性模量E/GPa | 15 | 205 |
泊松比ν | 0.3 | 0.3 |
热导率k/(W·m-1·K-1) | 140 | 13.2 |
比热容Cp /(J·kg-1·K-1) | 690 | 625 |
热膨胀系数α/(10-6 K-1) | 5.0 | 17.2 |
密度ρ/(kg·m-3) | 2230 | 8400 |
高温空气属性参数 | 数值 |
---|---|
黏度μg/(10-5 Pa·s) | 1.81 |
热导率kg/(W·m-1·K-1) | 0.0259 |
比热容Cpg/(J·kg-1·K-1) | 1005 |
密度ρg/(kg·m-3) | 1.205 |
表3 密封介质材料参数
Table 3 Material parameters of sealing medium
高温空气属性参数 | 数值 |
---|---|
黏度μg/(10-5 Pa·s) | 1.81 |
热导率kg/(W·m-1·K-1) | 0.0259 |
比热容Cpg/(J·kg-1·K-1) | 1005 |
密度ρg/(kg·m-3) | 1.205 |
水平 | δa/mm | Ls/mm | Hs/mm |
---|---|---|---|
1 | 0.2 | 11.0 | 5.5 |
2 | 0.3 | 12.0 | 6.0 |
3 | 0.4 | 13.0 | 6.5 |
表4 三因素三水平分析
Table 4 Analysis of three factors and three levels
水平 | δa/mm | Ls/mm | Hs/mm |
---|---|---|---|
1 | 0.2 | 11.0 | 5.5 |
2 | 0.3 | 12.0 | 6.0 |
3 | 0.4 | 13.0 | 6.5 |
参数 | 数值 | 参数 | 数值 | 参数 | 数值 |
---|---|---|---|---|---|
1.098 | b0 | 719.636 | 474.468 | ||
25.080 | b1 | 927.875 | -4.191 | ||
-0.965 | b2 | -46.908 | -88.622 | ||
0.279 | b3 | -49.728 | 0.845 | ||
-0.054 | b12 | -26.652 | -4.704 | ||
-0.851 | b13 | -130.304 | -38.455 | ||
-0.014 | b23 | 0.125 | 3.463 | ||
-8.666 | b11 | -0.049 | 433.685 | ||
0.045 | b22 | 3.163 | 3.292 | ||
-0.003 | b33 | 8.253 | -2.011 |
表5 回归方程参数
Table 5 Parameters of regression equation
参数 | 数值 | 参数 | 数值 | 参数 | 数值 |
---|---|---|---|---|---|
1.098 | b0 | 719.636 | 474.468 | ||
25.080 | b1 | 927.875 | -4.191 | ||
-0.965 | b2 | -46.908 | -88.622 | ||
0.279 | b3 | -49.728 | 0.845 | ||
-0.054 | b12 | -26.652 | -4.704 | ||
-0.851 | b13 | -130.304 | -38.455 | ||
-0.014 | b23 | 0.125 | 3.463 | ||
-8.666 | b11 | -0.049 | 433.685 | ||
0.045 | b22 | 3.163 | 3.292 | ||
-0.003 | b33 | 8.253 | -2.011 |
回归方程 | P值 | 相关系数R2 | 方均根差σ |
---|---|---|---|
qt | <0.0001 | 0.997 | 0.00012 |
Fo | <0.0001 | 0.993 | 0.00016 |
K | <0.0001 | 0.928 | 0.00154 |
表6 回归方程方差分析结果
Table 6 Results of variance analysis of regression equation
回归方程 | P值 | 相关系数R2 | 方均根差σ |
---|---|---|---|
qt | <0.0001 | 0.997 | 0.00012 |
Fo | <0.0001 | 0.993 | 0.00016 |
K | <0.0001 | 0.928 | 0.00154 |
性能指标 | 优化前 | 优化后 | 相对变化/% |
---|---|---|---|
泄漏量qt/(10-3 g·s-1) | 138.0 | 84.0 | -39.13 |
开启力Fo/N | 470 | 627 | 33.40 |
刚度K/(104 N·m-1) | 22.5 | 42.3 | 88.00 |
表7 优化结果对比
Table 7 Comparison of optimization results
性能指标 | 优化前 | 优化后 | 相对变化/% |
---|---|---|---|
泄漏量qt/(10-3 g·s-1) | 138.0 | 84.0 | -39.13 |
开启力Fo/N | 470 | 627 | 33.40 |
刚度K/(104 N·m-1) | 22.5 | 42.3 | 88.00 |
结构参数 | 优化前 | 优化后 |
---|---|---|
切口间隙δa/mm | 0.3 | 0.2 |
轴向厚度Ls/mm | 6.0 | 11.0 |
径向宽度Hs/mm | 6.0 | 6.5 |
表8 静环结构参数
Table 8 Static ring structure parameters
结构参数 | 优化前 | 优化后 |
---|---|---|
切口间隙δa/mm | 0.3 | 0.2 |
轴向厚度Ls/mm | 6.0 | 11.0 |
径向宽度Hs/mm | 6.0 | 6.5 |
1 | 陈礼顺, 王彦岭, 卢建红, 等. 航空发动机封严技术的研究和应用进展[J]. 航空制造技术, 2008, 51(8): 82-84, 95. |
Chen L S, Wang Y L, Lu J H, et al. Development of study and application of aeroengine sealing technology[J]. Aeronautical Manufacturing Technology, 2008, 51(8): 82-84, 95. | |
2 | 何强, 黄伟峰, 胡广阳, 等. 航空发动机气膜密封技术的发展[J]. 航空发动机, 2021, 47(4): 106-113. |
He Q, Huang W F, Hu G Y, et al. Research status of the film-riding gas seal technologies in aeroengine[J]. Aeroengine, 2021, 47(4): 106-113. | |
3 | 张志敏, 丁雪兴, 张兰霞, 等. 浮环密封端面分形磨损预估模型及数值分析[J]. 化工学报, 2022, 73(12): 5526-5536. |
Zhang Z M, Ding X X, Zhang L X, et al. Fractal wear prediction model and numerical analysis of floating ring seal face[J]. CIESC Journal, 2022, 73(12): 5526-5536. | |
4 | 王立功. 涨圈密封环性能分析及端面浅槽结构优化设计[D]. 长沙: 湖南大学, 2020. |
Wang L G. Performance analysis of sealing ring of expanding ring and optimization design of shallow groove structure on end face[D]. Changsha: Hunan University, 2020. | |
5 | Zhang Z N, Liu J, Tang Y H, et al. Optimizing the shape of top piston ring face using inverse method[J]. Industrial Lubrication and Tribology, 2016, 68(1): 9-15. |
6 | 胡纪滨, 姜超, 郭晓林. 胀圈旋转密封运动状态分析与实验研究[J]. 北京理工大学学报, 2007, 27(11): 965-968. |
Hu J B, Jiang C, Guo X L. Analysis and experimental study on the state of motion of rotary seal using sealing ring[J]. Transactions of Beijing Institute of Technology, 2007, 27(11): 965-968. | |
7 | 练兵, 张鸣鸣, 王军, 等. 某型发动机分油涨圈磨损问题分析及预防[J]. 航空维修与工程, 2022(10): 59-61. |
Lian B, Zhang M M, Wang J, et al. Analysis and prevention of working wear problem of piston ring for a certain type of engine[J]. Aviation Maintenance & Engineering, 2022(10): 59-61. | |
8 | Lebeck A O. A mixed friction hydrostatic mechanical face seal model with thermal rotation and wear[J]. A S L E Transactions, 1980, 23(4): 375-387. |
9 | Vinogradov A S, Sergeeva T V. Leakage account for radial face contact seal in aircraft engine support[J]. IOP Conference Series: Materials Science and Engineering, 2018, 302(1): 012003. |
10 | Fan T S, Behdinan K. Investigation into the effect of piston ring seals on an integrated squeeze film damper model[J].Journal of Mechanical Science and Technology, 2019, 33(2): 559-569. |
11 | 宫燃, 车华军, 张学荣. 传动装置密封环传热性能的建模研究[J]. 润滑与密封, 2011, 36(9): 55-58. |
Gong R, Che H J, Zhang X R. Analytical method of heat transfer for sealing ring in transmission of vehicle[J]. Lubrication Engineering, 2011, 36(9): 55-58. | |
12 | 宫燃, 李洪武, 周晓军. 传动装置密封环摩擦磨损性能研究[J]. 摩擦学学报, 2008, 28(6): 541-545. |
Gong R, Li H W, Zhou X J. Tribological properties of seals in integrated transmission of vehicle[J]. Tribology, 2008, 28(6): 541-545. | |
13 | 王恒. 车辆传动装置涨圈型密封环热失稳与热致磨损耦合分析[D]. 镇江: 江苏大学, 2019. |
Wang H. Coupling analysis about thermal instability and thermal wear of piston ring in vehicle transmission[D]. Zhenjiang: Jiangsu University, 2019. | |
14 | Mao J J, Ke L L, Yang J, et al. Thermoelastic instability of functionally graded coating with arbitrarily varying properties considering contact resistance and frictional heat[J]. Applied Mathematical Modelling, 2017, 43: 521-537. |
15 | 陈国明. 典型车用旋转密封材料的摩擦磨损和润滑特性研究[D]. 北京: 北京理工大学, 2016. |
Chen G M. Study on friction, wear and lubrication characteristics of rotary seals materials in automotive transmissions[D]. Beijing: Beijing Institute of Technology, 2016. | |
16 | 白忠恺. 涨圈高速旋转密封装置失效分析研究[J]. 现代机械, 2017(4): 51-54. |
Bai Z K. The failure analysisofthe piston ring rotating seals device withhigh-speed[J]. Modern Machinery, 2017(4): 51-54. | |
17 | 赵文静, 屠治荣, 孟祥铠, 等. 非规则V形表面织构化机械端面密封性能研究[J]. 化工学报, 2022, 73(10): 4585-4593. |
Zhao W J, Tu Z R, Meng X K, et al. Effect of irregular V-shaped surface texture on the performance of mechanical face seal[J]. CIESC Journal, 2022, 73(10): 4585-4593. | |
18 | Venkateswara babu P, Syed I, BenBeera S. Experimental investigation on effects of positive texturing on friction and wear reduction of piston ring/cylinder liner system[J]. Materials Today: Proceedings, 2020, 24: 1112-1121. |
19 | 秦自臻, 周平, 张斌, 等. PEEK旋转密封环密封性能仿真和试验研究[J]. 摩擦学学报, 2020, 40(3): 330-338. |
Qin Z Z, Zhou P, Zhang B, et al. Simulation and experimental study on sealing performance of PEEK rotary seal ring[J]. Tribology, 2020, 40(3): 330-338. | |
20 | Zhang L, He L D, Yan Z, et al. Research on temperature rise characteristics of end V-groove ring seal[J/OL]. International Journal of Turbo & Jet-Engines, 2022.. |
21 | 王和顺, 刘小明, 张车宁, 等. 双尖槽干气密封特性对比研究[J]. 摩擦学学报, 2021, 41(6): 974-982. |
Wang H S, Liu X M, Zhang C N, et al. A comparative research on the characteristics of dry gas seal with double pointed grooves[J]. Tribology, 2021, 41(6): 974-982. | |
22 | Du Q W, Zhang D. Research on the performance of supercritical CO2 dry gas seal with different deep spiral groove[J]. Journal of Thermal Science, 2019, 28(3): 547-558. |
23 | 袁韬, 李志刚, 李军, 等. 超临界二氧化碳多槽型干气密封泄漏流动与动力特性研究[J]. 推进技术, 2022, 43(9): 199-207. |
Yuan T, Li Z G, Li J, et al. Leakage flow and dynamic characteristics of supercritical carbon dioxide dry gas seals with different types of grooves[J]. Journal of Propulsion Technology, 2022, 43(9): 199-207. | |
24 | Zhao Y M, Yuan S H, Hu J B, et al. Nonlinear dynamic analysis of rotary seal ring considering creep rotation[J]. Tribology International, 2015, 82: 101-109. |
25 | Zhao Y M, Hu J B, Wei C. Dynamic analysis of spiral-groove rotary seal ring for wet clutches[J]. Journal of Tribology, 2014, 136(3): 031710. |
26 | Andrés L S, Koo B. Model and experimental verification of the dynamic forced performance of a tightly sealed squeeze film damper supplied with a bubby mixture[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(1): 011023. |
27 | 彭旭东, 江锦波, 白少先, 等. 中低压干气密封螺旋槽结构参数优化[J]. 化工学报, 2014, 65(11): 4536-4542. |
Peng X D, Jiang J B, Bai S X, et al. Structural parameter optimization of spiral groove dry gas seal under low or medium pressure[J]. CIESC Journal, 2014, 65(11): 4536-4542. | |
28 | 李世聪, 钱才富, 李双喜, 等. 高速高压宽温域动压密封动环端面微变形及其改善方法[J]. 北京航空航天大学学报, 2021, 47(6): 1173-1185. |
Li S C, Qian C F, Li S X, et al. Face micro-deformation and its control method of rotating ring of hydrodynamic face seal under high speed, high pressure and wide temperature range[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1173-1185. | |
29 | Gehannin J, Arghir M, Bonneau O. Complete squeeze-film damper analysis based on the “bulk flow” equations[J]. Tribology Transactions, 2009, 53(1): 84-96. |
30 | 吴新洲, 徐义华, 杨蓓, 等. 基于响应面法的C型金属封严环优化设计及其蠕变疲劳寿命计算[J]. 失效分析与预防, 2022, 17(4): 220-228, 246. |
Wu X Z, Xu Y H, Yang B, et al. Optimization design based on response surface method and creep fatigue life calculation of C-type metal sealing ring[J]. Failure Analysis and Prevention, 2022, 17(4): 220-228, 246. | |
31 | 郑娆, 张敬博, 李双喜, 等. 基于响应面法的船舶艉轴密封结构的优化设计[J]. 机电工程, 2022, 39(11): 1544-1550, 1626. |
Zheng R, Zhang J B, Li S X, et al. Optimization design of ship stern shaft seal structure based on response surface method[J]. Mechanical & Electrical Engineering Magazine, 2022, 39(11): 1544-1550, 1626. | |
32 | 刘蕴, 刘全兴, 殷鸣, 等. 基于半互功率谱密度及响应面法的干气密封系统工作模态分析[J]. 振动与冲击, 2019, 38(19): 208-217. |
Liu Y, Liu Q X, Yin M, et al. Operational modal analysis of dry gas sealing system based on semi-cross power spectral density and response surface method[J]. Journal of Vibration and Shock, 2019, 38(19): 208-217. |
[1] | 徐洁, 俞树荣, 丁雪兴, 蒋海涛, 丁俊华. 基于波箔片变形的浮动式箔片气膜密封性能分析[J]. 化工学报, 2022, 73(5): 2083-2093. |
[2] | 张秦意, 杨晓宏, 邓洪玲, 胡俊虎, 田瑞. 基于响应面法光热-光电膜蒸馏系统优化研究[J]. 化工学报, 2021, 72(4): 2156-2166. |
[3] | 鲁玉莹, 余黎明, 杨加可, 曾武松, 陆江银. 响应面法优化制备LDHs-CRMA复合改性沥青及其表征[J]. 化工学报, 2020, 71(3): 1362-1369. |
[4] | 田鹏飞, 盛依依, 孙杨, 丁豆豆, 徐晶, 韩一帆. Cu/Al2O3催化剂用于H2O2分解生成羟基自由基的效率[J]. 化工学报, 2018, 69(11): 4713-4721. |
[5] | 杜鹃, 王建友, 刘颖. 聚砜基阴离子交换膜响应面法优化设计及制备[J]. 化工学报, 2017, 68(4): 1667-1675. |
[6] | 凌慧, 郑成, 毛桃嫣, 魏渊, 刘颖. 响应面法优化微波辅助合成中碳链甘油三酯工艺[J]. 化工学报, 2016, 67(S2): 231-244. |
[7] | 孙志成, 韩进, 张明杨, MD. Asadur Rahoman, 王有昭, 齐元欣, 王敏, 谢元华, 朱彤. 机械转盘联合超声破解剩余污泥[J]. 化工学报, 2016, 67(12): 5229-5236. |
[8] | 程亮, 徐丽, 侯翠红, 雒廷亮, 张保林, 刘国际. 低温条件下纳米腐殖酸-尿素配合物的制备及表征[J]. 化工学报, 2015, 66(7): 2725-2736. |
[9] | 龚红升, 胡文斌, 廖列文, 张蔚欣, 刘其海, 胡国栋. 非离子型聚醚改性三硅氧烷表面活性剂的合成表征及性能[J]. 化工学报, 2015, 66(6): 2181-2188. |
[10] | 陈玉, 徐颖, 冯岳阳. 利用响应面法优化皂角苷浸提飞灰中重金属的处理条件[J]. 化工学报, 2014, 65(2): 701-710. |
[11] | 肖武, 李明月, 阮雪华, 贺高红, 都健. 响应面法优化一水硫酸氢钠流化催化精馏生产乙酸乙酯工艺条件[J]. 化工学报, 2014, 65(11): 4465-4471. |
[12] | 赵 扬1,罗金岳1,2. 9,10-环亚甲基假紫罗兰酮的响应面法合成[J]. 化工进展, 2013, 32(12): 2982-2987. |
[13] | 刘 杰1,王延鹏1,许 晶1,2, 王能飞2. 响应面法优化壳聚糖酶产生菌Mitsuaria sp.K1的产酶发酵条件[J]. 化工进展, 2013, 32(12): 2946-2951. |
[14] | 龚红升, 胡文斌, 廖列文, 罗泽保, 张素梅, 尹国强. 响应面法优化合成1,1,1,3,5,5,5-七甲基三硅氧烷[J]. 化工学报, 2013, 64(10): 3633-3639. |
[15] | 王伟洁1,李红梅1,薛 芳1,陈宝珍1,高露娇2. 短乳杆菌产胸苷磷酸化酶发酵培养基的优化[J]. 化工进展, 2013, 32(05): 1116-1121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||