化工学报 ›› 2025, Vol. 76 ›› Issue (6): 2755-2769.DOI: 10.11949/0438-1157.20241337
收稿日期:
2024-11-22
修回日期:
2024-12-29
出版日期:
2025-06-25
发布日期:
2025-07-09
通讯作者:
肖媛
作者简介:
陈怡(2000—),女,硕士研究生,cheney_gyl534@163.com
基金资助:
Yi CHEN1,2(), Yuan XIAO1,2(
), Guomin CUI1,2
Received:
2024-11-22
Revised:
2024-12-29
Online:
2025-06-25
Published:
2025-07-09
Contact:
Yuan XIAO
摘要:
基于质量和能量交换过程、设备和网络的比拟关系,采用质-能网络比拟优化可将小尺度特征的质量交换网络比拟为广义换热网络,有效地扩大求解域,提升全局优化质量。然而,该方法尚未充分考虑广义换热网络的不同个体在不同进化时期的最优网络结构,其全局和局部优化性能仍有较大的提升空间。为此,建立了广义换热网络和质量交换网络的同步比拟和平行进化策略,实现广义换热网络的局部最优结构实时回归至质量交换网络,并至平行进化层实施进一步的全局和局部优化。空气除氨和废水脱酚算例的应用结果表明,质-能系统比拟与平行进化可充分发挥广义换热网络在更大求解域内的全局搜索能力,并通过平行进化兼顾局部最优精度,为质量交换网络综合提供更有效的方法。
中图分类号:
陈怡, 肖媛, 崔国民. 质量交换网络的质-能系统比拟与平行进化[J]. 化工学报, 2025, 76(6): 2755-2769.
Yi CHEN, Yuan XIAO, Guomin CUI. Parallel evolutionary and mass-heat analogy optimization method of mass exchange network[J]. CIESC Journal, 2025, 76(6): 2755-2769.
传质设备 | 比拟关系Ⅰ | 比拟关系Ⅱ |
---|---|---|
填料塔 | ||
板式塔 |
表1 不同传质设备的比拟关系
Table 1 The analogy of different mass transfer equipment
传质设备 | 比拟关系Ⅰ | 比拟关系Ⅱ |
---|---|---|
填料塔 | ||
板式塔 |
流股 | 流量上限/ (kg/s) | 入口浓度/ (kg/kg) | 出口浓度/ (kg/kg) | mi,j | bi,j | C0j |
---|---|---|---|---|---|---|
Kw=0.02 kg NH3/(s∙kg);fC,p=139.05;α=0.66 | ||||||
R1 | 2.00 | 0.0050 | 0.0010 | — | — | — |
R2 | 4.00 | 0.0050 | 0.0025 | — | — | — |
R3 | 3.50 | 0.0110 | 0.0025 | — | — | — |
R4 | 1.50 | 0.0100 | 0.0050 | — | — | — |
R5 | 0.50 | 0.0080 | 0.0025 | — | — | — |
S1 | 1.80 | 0.0017 | 0.0071 | 1.20 | 0 | 0 |
S2 | 1.00 | 0.0025 | 0.0085 | 1.00 | 0 | 0 |
S3 | ∞ | 0 | 0.0170 | 0.50 | 0 | 0.001 |
表2 R5S3算例的流股参数
Table 2 Stream data in case R5S3
流股 | 流量上限/ (kg/s) | 入口浓度/ (kg/kg) | 出口浓度/ (kg/kg) | mi,j | bi,j | C0j |
---|---|---|---|---|---|---|
Kw=0.02 kg NH3/(s∙kg);fC,p=139.05;α=0.66 | ||||||
R1 | 2.00 | 0.0050 | 0.0010 | — | — | — |
R2 | 4.00 | 0.0050 | 0.0025 | — | — | — |
R3 | 3.50 | 0.0110 | 0.0025 | — | — | — |
R4 | 1.50 | 0.0100 | 0.0050 | — | — | — |
R5 | 0.50 | 0.0080 | 0.0025 | — | — | — |
S1 | 1.80 | 0.0017 | 0.0071 | 1.20 | 0 | 0 |
S2 | 1.00 | 0.0025 | 0.0085 | 1.00 | 0 | 0 |
S3 | ∞ | 0 | 0.0170 | 0.50 | 0 | 0.001 |
流股 | 热容流率上限/[J/(kg/s)] | 入口温度/ ℃ | 出口温度/℃ | ||
---|---|---|---|---|---|
H1 | 20.00 | 200.00 | 40.00 | ||
H2 | 40.00 | 200.00 | 100.00 | ||
H3 | 35.00 | 440.00 | 100.00 | ||
H4 | 15.00 | 400.00 | 200.00 | ||
H5 | 5.00 | 320.00 | 100.00 | ||
C1 | 18.00 | 81.60 | 340.80 | ||
C2 | 10.00 | 100.00 | 340.00 | ||
C3 | 50.00 | 0 | 340.00 | ||
比拟参数 | |||||
Cmax | Tmax | a | cp | ρ | C0 |
0.0100 | 400.00 | 100 | 10 | 1000 | 1.4 |
表3 H5C3算例的流股参数和比拟参数
Table 3 Stream data and analogy data in case H5C3
流股 | 热容流率上限/[J/(kg/s)] | 入口温度/ ℃ | 出口温度/℃ | ||
---|---|---|---|---|---|
H1 | 20.00 | 200.00 | 40.00 | ||
H2 | 40.00 | 200.00 | 100.00 | ||
H3 | 35.00 | 440.00 | 100.00 | ||
H4 | 15.00 | 400.00 | 200.00 | ||
H5 | 5.00 | 320.00 | 100.00 | ||
C1 | 18.00 | 81.60 | 340.80 | ||
C2 | 10.00 | 100.00 | 340.00 | ||
C3 | 50.00 | 0 | 340.00 | ||
比拟参数 | |||||
Cmax | Tmax | a | cp | ρ | C0 |
0.0100 | 400.00 | 100 | 10 | 1000 | 1.4 |
Problem | X | ∆LX | Xmin | ΦeX | Xg | Φg,X | δ | NP |
---|---|---|---|---|---|---|---|---|
GHEN | Q | 100.0000 | 5.00000 | 0.2850 | 100.000 | 0.001 | 0.010 | 10 |
SP | 0.0300 | 0.01000 | 0.0150 | 1.000 | ||||
Fcp | 0.0500 | 0.00100 | 0.0001 | 1.000 | ||||
MEN | M | 0.0003 | 0.00005 | 0.2400 | 0.002 | 0.005 | 0.001 | 10 |
SPM | 0.0300 | 0.01000 | 0.0600 | 1.000 | ||||
L | 0.0300 | 0.02000 | 0.1000 | 0.500 |
表4 RWCE算法的关键进化参数
Table 4 The parameters of the RWCE for optimizing GHEN and MEN
Problem | X | ∆LX | Xmin | ΦeX | Xg | Φg,X | δ | NP |
---|---|---|---|---|---|---|---|---|
GHEN | Q | 100.0000 | 5.00000 | 0.2850 | 100.000 | 0.001 | 0.010 | 10 |
SP | 0.0300 | 0.01000 | 0.0150 | 1.000 | ||||
Fcp | 0.0500 | 0.00100 | 0.0001 | 1.000 | ||||
MEN | M | 0.0003 | 0.00005 | 0.2400 | 0.002 | 0.005 | 0.001 | 10 |
SPM | 0.0300 | 0.01000 | 0.0600 | 1.000 | ||||
L | 0.0300 | 0.02000 | 0.1000 | 0.500 |
流股 | 流量上限/ (kg/s) | 入口浓度/ (kg/kg) | 出口浓度/ (kg/kg) | mi.j | bi.j | C0j |
---|---|---|---|---|---|---|
fC,N=4552 USD/(块·a) | ||||||
R1 | 2.00 | 0.0500 | 0.0100 | — | — | — |
R2 | 1.00 | 0.0300 | 0.0060 | — | — | — |
S1 | 5.00 | 0.0050 | 0.0150 | 2.00 | 0 | 0 |
S2 | 3.00 | 0.0100 | 0.0300 | 1.53 | 0 | 0 |
S3 | ∞ | 0.0013 | 0.0150 | 0.71 | 0.001 | 0.010 |
表5 R2S3算例的流股数据
Table 5 Stream data in case R2S3
流股 | 流量上限/ (kg/s) | 入口浓度/ (kg/kg) | 出口浓度/ (kg/kg) | mi.j | bi.j | C0j |
---|---|---|---|---|---|---|
fC,N=4552 USD/(块·a) | ||||||
R1 | 2.00 | 0.0500 | 0.0100 | — | — | — |
R2 | 1.00 | 0.0300 | 0.0060 | — | — | — |
S1 | 5.00 | 0.0050 | 0.0150 | 2.00 | 0 | 0 |
S2 | 3.00 | 0.0100 | 0.0300 | 1.53 | 0 | 0 |
S3 | ∞ | 0.0013 | 0.0150 | 0.71 | 0.001 | 0.010 |
流股 | 热容流率 上限/(J/(kg·s)) | 入口温度/℃ | 出口温度/℃ | ||
---|---|---|---|---|---|
H1 | 20.00 | 1000.00 | 200.00 | ||
H2 | 10.00 | 600.00 | 120.00 | ||
C1 | 50.00 | 200.00 | 600.00 | ||
C2 | 30.00 | 306.00 | 918.00 | ||
C3 | 10.00 | 38.46 | 233.00 | ||
比拟参数 | |||||
Cmax | Tmax | μ0 | cp | ρ | C0 |
0.0100 | 200.00 | 10000 | 10 | 1000 | 0.8 |
表6 H2C3算例的流股参数和比拟参数
Table 6 Stream data and analogy data in case H2C3
流股 | 热容流率 上限/(J/(kg·s)) | 入口温度/℃ | 出口温度/℃ | ||
---|---|---|---|---|---|
H1 | 20.00 | 1000.00 | 200.00 | ||
H2 | 10.00 | 600.00 | 120.00 | ||
C1 | 50.00 | 200.00 | 600.00 | ||
C2 | 30.00 | 306.00 | 918.00 | ||
C3 | 10.00 | 38.46 | 233.00 | ||
比拟参数 | |||||
Cmax | Tmax | μ0 | cp | ρ | C0 |
0.0100 | 200.00 | 10000 | 10 | 1000 | 0.8 |
Problem | X | ∆LX | Xmin | ΦeX | Xg | Φg,X | δ |
---|---|---|---|---|---|---|---|
GHEN | Q | 100.0000 | 10.00000 | 0.4000 | 100.000 | 0.005 | 0.020 |
SP | 0.0300 | 0.01000 | 0.1000 | 1.000 | |||
0.5000 | 0.00100 | 0.0001 | 1.000 | ||||
MEN | M | 0.0003 | 0.00005 | 0.2400 | 0.002 | 0.005 | 0.002 |
SPM | 0.0300 | 0.01000 | 0.0600 | 1.000 | |||
0.0500 | 0.02000 | 0.0001 | 0.500 |
表7 RWCE算法的关键进化参数
Table 7 Parameters of the RWCE for optimizing GHEN and MEN
Problem | X | ∆LX | Xmin | ΦeX | Xg | Φg,X | δ |
---|---|---|---|---|---|---|---|
GHEN | Q | 100.0000 | 10.00000 | 0.4000 | 100.000 | 0.005 | 0.020 |
SP | 0.0300 | 0.01000 | 0.1000 | 1.000 | |||
0.5000 | 0.00100 | 0.0001 | 1.000 | ||||
MEN | M | 0.0003 | 0.00005 | 0.2400 | 0.002 | 0.005 | 0.002 |
SPM | 0.0300 | 0.01000 | 0.0600 | 1.000 | |||
0.0500 | 0.02000 | 0.0001 | 0.500 |
文献 | 单元数 | 总塔板数 | C |
---|---|---|---|
[ | 6 | 28 | 345416 |
[ | 7 | 28 | 338168 |
[ | 7 | 28 | 333300 |
[ | 7 | 21 | 329503 |
[ | 6 | 24 | 321800 |
本文( | 6 | 21 | 318362 |
本文( | 6 | 22 | 317013 |
表8 R2S3算例的优化结果对比
Table 8 Comparison results of case R2S3
文献 | 单元数 | 总塔板数 | C |
---|---|---|---|
[ | 6 | 28 | 345416 |
[ | 7 | 28 | 338168 |
[ | 7 | 28 | 333300 |
[ | 7 | 21 | 329503 |
[ | 6 | 24 | 321800 |
本文( | 6 | 21 | 318362 |
本文( | 6 | 22 | 317013 |
算例 | 种群规模 | C | 单元个数 | 总塔板数 | 迭代次数/步 |
---|---|---|---|---|---|
R2S3 | 10 | 321086 | 6 | 22 | 4.17×107 |
20 | 321623 | 6 | 22 | 2.78×107 | |
40 | 321766 | 7 | 27 | 1.39×107 | |
60 | 325406 | 7 | 22 | 9.43×106 | |
80 | 318362 | 6 | 21 | 6.88×106 | |
100 | 334429 | 6 | 24 | 4.92×106 |
表9 不同种群规模下R2S3算例的优化结果对比
Table 9 Comparison of optimization results for case R2S3 at different population sizes
算例 | 种群规模 | C | 单元个数 | 总塔板数 | 迭代次数/步 |
---|---|---|---|---|---|
R2S3 | 10 | 321086 | 6 | 22 | 4.17×107 |
20 | 321623 | 6 | 22 | 2.78×107 | |
40 | 321766 | 7 | 27 | 1.39×107 | |
60 | 325406 | 7 | 22 | 9.43×106 | |
80 | 318362 | 6 | 21 | 6.88×106 | |
100 | 334429 | 6 | 24 | 4.92×106 |
δM | 单元数 | 总塔板数 | C | 优化时间/s |
---|---|---|---|---|
0 | 5 | 24 | 334660 | 431764 |
0.100 | 7 | 22 | 321536 | 436478 |
0.010 | 6 | 23 | 319785 | 434416 |
0.001 | 6 | 24 | 321136 | 430204 |
0.002 | 6 | 22 | 317073 | 374296 |
表10 不同接受差解概率下R2S3算例的优化结果
Table 10 The optimization results for R2S3 case study with different accepting imperfect solution
δM | 单元数 | 总塔板数 | C | 优化时间/s |
---|---|---|---|---|
0 | 5 | 24 | 334660 | 431764 |
0.100 | 7 | 22 | 321536 | 436478 |
0.010 | 6 | 23 | 319785 | 434416 |
0.001 | 6 | 24 | 321136 | 430204 |
0.002 | 6 | 22 | 317073 | 374296 |
文献 | 单元数 | C | C | C |
---|---|---|---|---|
[ | 8 | 85203 | 48797 | 134000 |
[ | 7 | 82410 | 50913 | 133323 |
[ | 9 | — | — | 132101 |
[ | 9 | 81301 | 48599 | 129900 |
[ | 8 | 73350 | 47367 | 120717 |
[ | 9 | 77508 | 50299 | 127807 |
本文( | 9 | 78338 | 47823 | 126161 |
本文( | 9 | 78338 | 47773 | 126148 |
表11 R5S3算例的优化结果对比
Table 11 Comparison results of case R5S3
文献 | 单元数 | C | C | C |
---|---|---|---|---|
[ | 8 | 85203 | 48797 | 134000 |
[ | 7 | 82410 | 50913 | 133323 |
[ | 9 | — | — | 132101 |
[ | 9 | 81301 | 48599 | 129900 |
[ | 8 | 73350 | 47367 | 120717 |
[ | 9 | 77508 | 50299 | 127807 |
本文( | 9 | 78338 | 47823 | 126161 |
本文( | 9 | 78338 | 47773 | 126148 |
[1] | 裴宏斌, 陈理, 都健, 等. 进出口流率变化的多组分质量交换网络综合方法研究[J]. 大连理工大学学报, 2008, 48(6): 793-799. |
Pei H B, Chen L, Du J, et al. Study of multi-component mass exchange network synthesis with variable flowrates of inlet and outlet[J]. Journal of Dalian University of Technology, 2008, 48(6): 793-799. | |
[2] | 杨友麒. 质量交换网络[J]. 化工进展, 2007, 26(2): 284-289. |
Yang Y Q. Mass exchange networks[J]. Chemical Industry and Engineering Progress, 2007, 26(2): 284-289. | |
[3] | Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5): 745-763. |
[4] | El-Halwagi M M, Manousiouthakis V. Synthesis of mass exchange networks[J]. AIChE Journal, 1989, 35(8): 1233-1244. |
[5] | Gadalla M A. A new graphical-based approach for mass integration and exchange network design[J]. Chemical Engineering Science, 2015, 127: 239-252. |
[6] | Yanwarizal, Oladosu W A, Wan Alwi S R, et al. A new graphical approach for simultaneous targeting and design of mass exchange networks[J]. Computers & Chemical Engineering, 2020, 142: 107061. |
[7] | Papalexandri K, Pistikopoulos E, Floudas A. Mass exchange networks for waste minimization: a simultaneous approach: process design[J]. Chemical Engineering Research & Design, 1994, 72: 279-294. |
[8] | Isafiade A J, Fraser D M. Interval based MINLP superstructure synthesis of mass exchange networks[J]. Chemical Engineering Research and Design, 2008, 86(8): 909-924. |
[9] | 谢会, 史彬, 鄢烈祥, 等. 列队竞争算法综合质量交换网络[J]. 计算机与应用化学, 2010, 27(12): 1617-1620. |
Xie H, Shi B, Yan L X, et al. Mass exchange networks synthesis using line-up competition algorithm[J]. Computers and Applied Chemistry, 2010, 27(12): 1617-1620. | |
[10] | 李绍军, 阳永荣. 利用改进的遗传算法进行质量交换网络的最优综合[J]. 化工学报, 2002, 53(1): 60-65. |
Li S J, Yang Y R. Mass exchanger networks synthesis using genetic-alopex algorithms[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(1): 60-65. | |
[11] | Chen C L, Hung P S. Simultaneous synthesis of mass exchange networks for waste minimization[J]. Computers & Chemical Engineering, 2005, 29(7): 1561-1576. |
[12] | 都健, 高志辉, 陈理, 等. 采用浓度差同步优化的质量交换网络设计[J]. 化工学报, 2007, 58(7): 1768-1775. |
Du J, Gao Z H, Chen L, et al. Mass exchange network design using simultaneous optimization of composition differences[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(7): 1768-1775. | |
[13] | Zhou Z Q, Cui G M, Xiao Y. A novel node-based non-structural model for mass exchanger network synthesis using a stochastic algorithm[J]. Journal of Cleaner Production, 2022, 376: 134227. |
[14] | 薛东峰. 废物最小化为目标的质量集成方法研究[D]. 大连: 大连理工大学, 2001. |
Xue D F. Study on mass integration for waste minimization[D]. Dalian: Dalian University of Technology, 2001. | |
[15] | 都健, 李秀峰, 陈理, 等. 超结构法分步综合热集成的质量交换网络[J]. 化工学报, 2010, 61(10): 2636-2643. |
Du J, Li X F, Chen L, et al. Synthesis of heat integrated mass exchanger networks using step-wise approach based on superstructure[J]. CIESC Journal, 2010, 61(10): 2636-2643. | |
[16] | 刘琳琳. 多组分体系质量-热量联合交换网络综合研究[D]. 大连: 大连理工大学, 2013. |
Liu L L. Study on combined mass and heat exchange networks synthesis for multi-component systems[D]. Dalian: Dalian University of Technology, 2013. | |
[17] | Xu Y, Cui G M, Shen S Q, et al. An efficient two-step optimization method for mass exchanger network synthesis[J]. Chemical Engineering Science, 2023, 273: 118631. |
[18] | Xiao Y, Cui G M, Xu Y, et al. An efficient and random synthesis method for mass exchange networks with multi-component using a node-based vertical non-structural model[J]. Journal of Cleaner Production, 2023, 416: 137951. |
[19] | 易智康, 崔国民, 周志强, 等. 棋盘模型同步优化质量交换网络[J]. 计算物理, 2023, 40(4): 500-510. |
Yi Z K, Cui G M, Zhou Z Q, et al. A chessboard model for simultaneous optimization of mass exchange networks[J]. Chinese Journal of Computational Physics, 2023, 40(4): 500-510. | |
[20] | Xiao Y, Cui G M. A novel mass-heat exchange network analogy, regression, and synthesis method for mass exchanger networks[J]. Heliyon, 2023, 9(10): e20574. |
[21] | 肖媛, 陈怡, 刘思琪, 等. 基于广义换热网络的质量交换网络质能比拟及全局优化[J]. 化工进展, 2025, 44(1): 121-134. |
Xiao Y, Chen Y, Liu S Q, et al. Mass-heat analogy and global optimization of mass exchange network based on generalized heat exchanger network[J]. Process in Chemistry, 2025, 44(1): 121-134. | |
[22] | Hallale N, Capital cost targets for the optimum synthesis of mass exchange networks[D]. Cape Town: University of Cape Town, 1998. |
[23] | Hallale N, Fraser D M. Capital and total cost targets for mass exchange networks(part 2): Detailed capital cost models[J]. Computers & Chemical Engineering, 2000, 23(11/12): 1681-1699. |
[24] | Hallale N, Fraser D M. Capital and total cost targets for mass exchange networks(part 1): Simple capital cost models[J]. Computers & Chemical Engineering, 2000, 23(11/12): 1661-1679. |
[25] | Comeaux R. Synthesis of MENs with minimum total cost[D]. Manchester, UK: UMIST, 2000. |
[26] | 杨岭, 崔国民, 周志强, 等. 精细搜索策略应用于质量交换网络综合[J]. 化工学报, 2022, 73(7): 3145-3155. |
Yang L, Cui G M, Zhou Z Q, et al. Fine search strategy applied to mass exchange network synthesis[J]. CIESC Journal, 2022, 73(7): 3145-3155. | |
[27] | Szitkai Z, Farkas T, Lelkes Z, et al. Fairly linear mixed integer nonlinear programming model for the synthesis of mass exchange networks[J]. Industrial & Engineering Chemistry Research, 2006, 45(1): 236-244. |
[28] | Isafiade A J, Fraser D M. Extended interval-based mixed integer nonlinear programming superstructure synthesis of heat and mass exchanger networks[J]. Industrial & Engineering Chemistry Research, 2010, 49(1): 166-179. |
[29] | Azeez O S, Isafiade A J, Fraser D M. Supply-based superstructure synthesis of heat and mass exchange networks[J]. Computers & Chemical Engineering, 2013, 56: 184-201. |
[30] | 高志辉. 费用最小的质量交换网络综合研究[D]. 大连: 大连理工大学, 2007. |
Gao Z H. Study on synthesis of mass exchange network targeting minimum cost[D]. Dalian: Dalian University of Technology, 2007. |
[1] | 杨岭, 崔国民, 周志强, 肖媛. 精细搜索策略应用于质量交换网络综合[J]. 化工学报, 2022, 73(7): 3145-3155. |
[2] | 石向成, 赵志坚, 巩金龙. 遗传算法在催化体系的全局结构优化中的应用[J]. 化工学报, 2021, 72(1): 27-41. |
[3] | 陈旭, 梅从立, 徐斌, 丁煜函, 刘国海. 一种求解过程动态优化问题的生物地理学习粒子群算法[J]. 化工学报, 2017, 68(8): 3161-3167. |
[4] | 段星辰, 杜文莉. 基于bootstrap GEI算法的碳二加氢反应器代理模型[J]. 化工学报, 2015, 66(12): 4904-4909. |
[5] | 叶贞成, 钱智媛, 罗娜. 基于EGO算法的常压塔能量优化[J]. 化工学报, 2014, 65(12): 4929-4934. |
[6] | 郭晓娟1,张于峰2,秦贯丰1. 废弃印刷线路板热解表观动力学模型研究[J]. 化工进展, 2012, 31(11): 2395-2399. |
[7] | 胡向柏,崔国民,许海珠,何巧乐. 换热器优化顺序对换热网络全局优化的影响[J]. 化工进展, 2012, 31(05): 987-991. |
[8] | 都健, 李秀峰, 陈理, 姚平经. 超结构法分步综合热集成的质量交换网络 [J]. 化工学报, 2010, 61(10): 2636-2643. |
[9] | 汪洪涛,王 华,柴先锋. 柴油加氢脱硫的动力学模型 [J]. CIESC Journal, 2009, 28(5): 769-. |
[10] | 都健; 高志辉 ;陈理; 姚平经. 采用浓度差同步优化的质量交换网络设计 [J]. CIESC Journal, 2007, 58(7): 1768-1775. |
[11] | 杨友麒. 质量交换网络 [J]. CIESC Journal, 2007, 26(2): 284-. |
[12] | 成飙, 郑启富, 陈德钊, 贺益君. 基于LCPSO算法的相稳定性判别 [J]. 化工学报, 2007, 58(12): 2957-2963. |
[13] | 王江峰, 沈静珠, 李有润, 胡山鹰. 不相容多组分质量交换网络综合 [J]. 化工学报, 2004, 55(2): 297-300. |
[14] | 胡仰栋; 徐冬梅; 华贲; 韩方煜. 逐步线性规划法求解废水最小化问题 [J]. CIESC Journal, 2002, 53(1): 66-71. |
[15] | 李绍军; 阳永荣. 利用改进的遗传算法进行质量交换网络的最优综合 [J]. CIESC Journal, 2002, 53(1): 60-65. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 27
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 68
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||