化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3145-3155.doi: 10.11949/0438-1157.20220024

• 过程系统工程 • 上一篇    下一篇

精细搜索策略应用于质量交换网络综合

杨岭(),崔国民(),周志强,肖媛   

  1. 上海理工大学能源与动力工程学院,上海市动力工程多相流动与传热重点实验室,上海 200093
  • 收稿日期:2022-01-06 修回日期:2022-03-23 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 崔国民 E-mail:969101139@qq.com;cgm@usst.edu.cn
  • 作者简介:杨岭(1997—),男,硕士研究生,969101139@qq.com
  • 基金资助:
    国家自然科学基金项目(21978171);中国博士后科学基金项目(2020M671171)

Fine search strategy applied to mass exchange network synthesis

Ling YANG(),Guomin CUI(),Zhiqiang ZHOU,Yuan XIAO   

  1. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China
  • Received:2022-01-06 Revised:2022-03-23 Published:2022-07-05 Online:2022-08-01
  • Contact: Guomin CUI E-mail:969101139@qq.com;cgm@usst.edu.cn

摘要:

质量交换网络是化工过程系统的重要组成部分,其优化设计对降低污染排放具有重要意义。采用启发式算法优化质量交换网络时,存在难以兼顾全局搜索和局部搜索的问题。通过分析不同精度优化参数下的优化结果,揭示了该问题的成因,并提出一种精细搜索策略用于基础算法所得结构的深度优化。该策略包含两种方法,方法1采用具有个体回代与分化的高精度强制进化随机游走算法,可保留个体结构变异能力;方法2采用确定性方法依次对多维目标函数中的每个变量进行一维搜索,具有精度高收敛快的优点。将该策略应用于焦炉气脱硫和空气除氨算例,得到的结果分别为407308 USD·a-1和127807 USD·a-1,经济性优于现有文献中的结果,验证了本策略的有效性。

关键词: 质量交换网络, 过程系统, 优化, 强制进化随机游走算法, 确定性方法

Abstract:

Mass exchange network is an important part of chemical process system, and its optimal design is of great significance to reduce pollution emissions. When the heuristic algorithm is used to optimize the mass exchange network, there is a problem that it is difficult to take into account both the global search and the local search. By analyzing the optimization results under different precision optimization parameters, this paper reveals the causes of the problem, and proposes a fine search strategy for the in-depth optimization of the structure obtained by the basic algorithm. The strategy includes two methods. Method 1 adopted a high-precision random walk algorithm with compulsive evolution (RWCE) with individual back substitution and differentiation, which can retain the ability of individual structure variation. Method 2 used the deterministic approach to perform a one-dimensional search for each variable in the multidimensional objective function in turn, which has the advantages of high precision and fast convergence. Applying this strategy to coke oven gas sweetening and ammonia removal problem, the results are 407308 USD·a-1 and 127807 USD·a-1, which are better than the best results in the current literature. The effectiveness of the proposed strategy is verified.

Key words: mass exchange network, process system, optimization, random walk algorithm with compulsive evolution, deterministic method

中图分类号: 

  • TQ 021.8

图1

质量交换网络示意图"

图2

贫富流股的相平衡关系"

图3

有分流节点非结构模型"

图4

参数A得到的结构"

图5

参数B得到的结构"

图6

不同优化参数的TAC迭代曲线"

图7

基于启发式算法的精细搜索策略流程"

表1

算例1的流股数据"

流股最大流量/(kg·s-1)入口浓度/(kg H2S·kg-1)目标浓度/(kg H2S·kg-1)mbC0
R10.90000.070000.00030
R20.10000.051000.00010
S12.30000.000600.031001.450117360
S20.000200.003500.260176040

图8

算例1优化全过程的TAC迭代曲线"

图9

算例1精细搜索前后的网络结构"

表2

算例1的结果对比"

文献单元数总塔板数TAC/(USD·a-1)
[24]4530471
[25]5469968
[7]5431613
[26]425429700
[27]421422293
[28]424420545
[15]420412500
[16]422411166
[13]619410971
[14]619410565
本文421407308

表3

算例2的流股数据"

流股最大流量/(kg·s-1)入口浓度/(kg NH3·kg-1)目标浓度/(kg NH3·kg-1)mbC0
R12.00000.005000.00100
R24.00000.005000.00250
R33.50000.011000.00250
R41.50000.010000.00500
R50.50000.008000.00250
S11.80000.001700.007101.200
S21.00000.002500.00850100
S30.000000.017000.500.001

图10

算例2基础RWCE与精细搜索优化过程的TAC曲线"

图11

算例2精细搜索前后的结构"

表4

算例2的结果对比"

文献单元数操作费用/(USD·a-1)投资费用/(USD·a-1)TAC/(USD·a-1)
[30]88520348797134000
[12]78241050913133323
[25]98130148599129900
[28]87335047367120717
本文97750850299127807
1 张贤, 郭偲悦, 孔慧, 等. 碳中和愿景的科技需求与技术路径[J]. 中国环境管理, 2021, 13(1): 65-70.
Zhang X, Guo S Y, Kong H, et al. Technology demands and approach of carbon neutrality vision[J]. Chinese Journal of Environmental Management, 2021, 13(1): 65-70.
2 薛东峰, 陈理, 袁一, 等. 质量交换网络综合[J]. 现代化工, 2001, 21(6): 16-19, 21.
Xue D F, Chen L, Yuan Y, et al. Synthesis of mass exchange network[J]. Modern Chemical Industry, 2001, 21(6): 16-19, 21.
3 El-Halwagi M M, Manousiouthakis V. Synthesis of mass exchange networks[J]. AIChE Journal, 1989, 35(8): 1233-1244.
4 Farrag N M, Kamel D A, Ghallab A O, et al. Graphical design and analysis of mass exchange networks using composition driving forces[J]. South African Journal of Chemical Engineering, 2021, 36: 94-104.
5 Velázquez-Guevara M Á, Uribe-Ramírez A R, Gómez-Castro F I, et al. Optimal synthesis of mass exchange networks through a state-task representation superstructure[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2018: 331-336.
6 Short M, Isafiade A J. Thirty years of mass exchanger network synthesis—a systematic review[J]. Journal of Cleaner Production, 2021, 304: 127112.
7 Hallale N, Fraser D M. Capital and total cost targets for mass exchange networks(Ⅰ): Simple capital cost models[J]. Computers & Chemical Engineering, 2000, 23(11/12): 1661-1679.
8 Hallale N, Fraser D M. Capital and total cost targets for mass exchange networks(Ⅱ): Detailed capital cost models[J]. Computers & Chemical Engineering, 2000, 23(11/12): 1681-1699.
9 Gadalla M A. A new graphical-based approach for mass integration and exchange network design[J]. Chemical Engineering Science, 2015, 127: 239-252.
10 Yanwarizal, Oladosu W A, Wan Alwi S R, et al. A new graphical approach for simultaneous targeting and design of mass exchange networks[J]. Computers & Chemical Engineering, 2020, 142: 107061.
11 El-Halwagi M M, Manousiouthakis V. Automatic synthesis of mass-exchange networks with single-component targets[J]. Chemical Engineering Science, 1990, 45(9): 2813-2831.
12 Isafiade A J, Fraser D M. Interval based MINLP superstructure synthesis of mass exchange networks[J]. Chemical Engineering Research and Design, 2008, 86(8): 909-924.
13 李绍军, 阳永荣. 利用改进的遗传算法进行质量交换网络的最优综合[J]. 化工学报, 2002, 53(1): 60-65.
Li S J, Yang Y R. Mass exchanger networks synthesis using genetic-alopex algorithms[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(1): 60-65.
14 谢会, 史彬, 鄢烈祥, 等. 列队竞争算法综合质量交换网络[J]. 计算机与应用化学, 2010, 27(12): 1617-1620.
Xie H, Shi B, Yan L X, et al. Mass exchange networks synthesis using line-up competition algorithm[J]. Computers and Applied Chemistry, 2010, 27(12): 1617-1620.
15 都健, 高志辉, 陈理, 等. 采用浓度差同步优化的质量交换网络设计[J]. 化工学报, 2007, 58(7): 1768-1775.
Du J, Gao Z H, Chen L, et al. Mass exchange network design using simultaneous optimization of composition differences[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(7): 1768-1775.
16 侯创, 罗明生, 徐文星. 取整函数优化基于超结构模型的质量交换网络[J]. 化学反应工程与工艺, 2020, 36(2): 108-116.
Hou C, Luo M S, Xu W X. An integral function to optimize the mass exchange network based on superstructure model[J]. Chemical Reaction Engineering and Technology, 2020, 36(2): 108-116.
17 Liu L L, Du J, Yang F L. Combined mass and heat exchange network synthesis based on stage-wise superstructure model[J]. Chinese Journal of Chemical Engineering, 2015, 23(9): 1502-1508.
18 Xu Y, Kayange H A, Cui G M. A nodes-based non-structural model considering a series structure for heat exchanger network synthesis[J]. Processes, 2020, 8(6): 695.
19 Xiao Y, Cui G M. A novel random walk algorithm with compulsive evolution for heat exchanger network synthesis[J]. Applied Thermal Engineering, 2017, 115: 1118-1127.
20 韩正恒, 崔国民, 赵倩倩, 等. RWCE算法中采用单元重构策略激励换热网络结构优化[J]. 化工学报, 2021, 72(6): 3316-3327.
Han Z H, Cui G M, Zhao Q Q, et al. Impelling structural optimization of heat exchanger network by unitreconfiguration strategy in RWCE algorithm[J]. CIESC Journal, 2021, 72(6): 3316-3327.
21 周志强, 崔国民, 杨岭, 等. 一种基于并行计算的混合算法优化有分流换热网络[J]. 化工学报, 2022, 73(2): 801-813.
Zhou Z Q, Cui G M, Yang L, et al. A hybrid algorithm based on parallel computing for heat exchanger network optimization with stream splits[J]. CIESC Journal, 2022, 73(2): 801-813.
22 韦根原, 冯新强. 热工过程参数的改进逐维黄金分割法辨识[J]. 热力发电, 2015, 44(10): 68-71.
Wei G Y, Feng X Q. Identification of thermal process parameters by improved dimension-by-dimension golden section method[J]. Thermal Power Generation, 2015, 44(10): 68-71.
23 Fraser D M, Shenoy U V. A new method for sizing mass exchange units without the singularity of the Kremser equation[J]. Computers & Chemical Engineering, 2004, 28(11): 2331-2335.
24 Isafiade A J. Interval based MINLP superstructure synthesis of heat and mass exchange networks[D]. Cape Town: University of Cape Town, 2008.
25 Azeez O S, Isafiade A J, Fraser D M. Supply-based superstructure synthesis of heat and mass exchange networks[J]. Computers & Chemical Engineering, 2013, 56: 184-201.
26 Chen C L, Hung P S. Simultaneous synthesis of mass exchange networks for waste minimization[J]. Computers & Chemical Engineering, 2005, 29(7): 1561-1576.
27 王江峰, 沈静珠, 李有润, 等. 多目标模糊评价遗传算法综合质量交换网络[J]. 高校化学工程学报, 2002, 16(5): 549-554.
Wang J F, Shen J Z, Li Y R, et al. Mass exchange networks synthesis using multi-objective genetic algorithm based on the fuzzy reasoning[J]. Journal of Chemical Engineering of Chinese Universities, 2002, 16(5): 549-554.
28 高志辉. 费用最小的质量交换网络综合研究[D]. 大连: 大连理工大学, 2007.
Gao Z H. Study on synthesis of mass exchange network targeting minimum cost[D]. Dalian: Dalian University of Technology, 2007.
29 Hallale N. Capital cost targets for the optimum synthesis of mass exchange networks[D]. Cape Town: University of Cape Town, 1998.
30 Szitkai Z, Farkas T, Lelkes Z, et al. Fairly linear mixed integer nonlinear programming model for the synthesis of mass exchange networks[J]. Industrial & Engineering Chemistry Research, 2006, 45(1): 236-244.
[1] 赵春雷, 郭亮, 高聪, 宋伟, 吴静, 刘佳, 刘立明, 陈修来. 代谢工程改造大肠杆菌生产软骨素[J]. 化工学报, 2023, 74(5): 2111-2122.
[2] 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045.
[3] 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087.
[4] 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949.
[5] 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973.
[6] 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817.
[7] 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488.
[8] 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650.
[9] 高小永, 黄付宇, 郑万鹏, 彭雕, 杨一旭, 黄德先. 考虑调度操作安全平稳性的炼油化工生产过程调度优化[J]. 化工学报, 2023, 74(4): 1619-1629.
[10] 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679.
[11] 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274.
[12] 顾学荣, 刘硕士, 杨思宇. 基于并行EGO和代理模型辅助的多参数优化方法研究[J]. 化工学报, 2023, 74(3): 1205-1215.
[13] 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186.
[14] 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053.
[15] 何仁初, 张朝晖, 杨明磊, 王聪, 奚桢浩. 考虑碳排放因素的汽油调合在线优化[J]. 化工学报, 2023, 74(2): 818-829.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!