化工学报 ›› 2025, Vol. 76 ›› Issue (12): 6551-6561.DOI: 10.11949/0438-1157.20250345

• 生物化学工程与技术 • 上一篇    下一篇

LysR家族转录调控因子对丁烯基多杀菌素生物合成的影响

陈霞1,2(), 郭超2, 李新颖2,3, 王超2(), 李春1,3,4()   

  1. 1.石河子大学化学化工学院/化工绿色过程省部共建国家重点实验室培育基地,新疆 石河子 832003
    2.国家粮食和物资储备局科学研究院,北京 100037
    3.北京理工大学化学与化工学院生物化工研究所/医药分子科学与制剂工信部重点实验室,北京 100081
    4.清华大学化学工程系工业生物催化教育部重点实验室,北京 100084
  • 收稿日期:2025-04-07 修回日期:2025-06-17 出版日期:2025-12-31 发布日期:2026-01-23
  • 通讯作者: 王超,李春
  • 作者简介:陈霞(1999—),女,硕士研究生, cx991009@163.com
  • 基金资助:
    十四五重点研发计划项目(2023YFA0914700);工业生物催化教育部重点实验室(清华大学)开放基金资助项目(2023003);工业生物催化教育部重点实验室(清华大学)开放基金资助项目(2024003)

Effect of LysR family transcriptional regulatory factors on the biosynthesis of butenyl-spinosyn

Xia CHEN1,2(), Chao GUO2, Xinying LI2,3, Chao WANG2(), Chun LI1,3,4()   

  1. 1.School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi 832003, Xinjiang, China
    2.Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
    3.Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering of Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
    4.Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2025-04-07 Revised:2025-06-17 Online:2025-12-31 Published:2026-01-23
  • Contact: Chao WANG, Chun LI

摘要:

丁烯基多杀菌素(butenyl-spinosyn)是由须糖多孢菌(Saccharopolyspora pogona)产生的新型绿色生物杀虫剂,然而,由于其代谢网络复杂、遗传背景不清晰、调控机制未得到充分解析,导致其合成效率低,难以满足实际需求。本研究基于对S. pogona ASAGF58和S. pogona ASAGF40转录组学数据分析,挖掘参与次级代谢调控、影响丁烯基多杀菌素合成的LysR家族转录调控因子并构建相关工程菌株。结果显示,RS18275使丁烯基多杀菌素产量达到67.1 mg/L,为出发菌ASAGF58的2.3倍,同时促进细胞生长,菌体生物量提高30.63%,并加快了底物葡萄糖的消耗。比较转录组学分析表明,RS18275通过调控初级代谢途径增强了乙酰辅酶A等前体供应,上调丁烯基多杀菌素生物合成途径关键基因提高了产物合成通量。基于比较转录组学分析和验证,初步解析了RS18275作为全局调控因子,通过调控初级代谢与次级代谢实现目标化合物高效合成的生理机制,为后续丁烯基多杀菌素的高效合成提供理论与工程化策略。

关键词: 丁烯基多杀菌素, 须糖多孢菌, 转录调控因子, 比较转录组学

Abstract:

Butenyl spinosyns are new green biopesticides produced by Saccharopolyspora pogona. However, due to their complex metabolic network, unclear genetic background and inadequately analyzed regulatory mechanisms, their synthesis efficiency is low and it is difficult to meet actual needs. In this study, comparative transcriptomics analysis of S. pogona ASAGF58 (wild-type) and its high-yielding mutant ASAGF40 led to the identification of LysR family transcriptional regulators associated with secondary metabolism and butenyl-spinosyn biosynthesis. Engineered strains were subsequently constructed to validate their regulatory roles. Among them, RS18275 significantly enhanced butenyl-spinosyn production to 67.1 mg/L, achieving a yield 2.3-fold higher than the parental strain ASAGF58, accompanied by a 30.63% enhancement in biomass and accelerated glucose consumption. Comparative transcriptomic analysis demonstrated that RS18275 promotes precursor supply (e.g., acetyl-CoA) by regulating primary metabolic pathways and increases product biosynthetic flux by upregulating the expression of key genes involved in the butenyl-spinosyn biosynthetic pathway. Based on comparative transcriptomics analysis and verification, the physiological mechanism of RS18275 as a global regulatory factor to achieve efficient synthesis of target compounds by regulating primary metabolism and secondary metabolism was preliminarily analyzed, providing theoretical and engineering strategies for the subsequent efficient synthesis of butenyl spinosad.

Key words: butenyl-spinosyn, Saccharopolyspora pogona, transcriptional regulatory factors, comparative transcriptomics

中图分类号: