化工学报 ›› 2025, Vol. 76 ›› Issue (10): 5236-5248.DOI: 10.11949/0438-1157.20250520
陈千1(
), 周冠文1, 刘雪娇1, 方磊2, 居鹤鸣2, 钟文琪1(
)
收稿日期:2025-05-12
修回日期:2025-07-24
出版日期:2025-10-25
发布日期:2025-11-25
通讯作者:
钟文琪
作者简介:陈千(2000—),女,硕士研究生,826709079@qq.com
基金资助:
Qian CHEN1(
), Guanwen ZHOU1, Xuejiao LIU1, Lei² FANG2, Heming² JU2, Wenqi ZHONG1(
)
Received:2025-05-12
Revised:2025-07-24
Online:2025-10-25
Published:2025-11-25
Contact:
Wenqi ZHONG
摘要:
针对钢铁生产园区多工序时空深度耦合、碳排放核算粗放及减排路径不清等问题,构建了钢铁生产全流程碳流演化模型,提出碳流监测追踪及碳排放核算方法。以南京某钢铁园区为对象开展了钢铁生产流程碳演化路径及CO2排放特性分析。研究发现:系统层面,碳元素主要来源于外购焦炭、炼焦煤和喷吹煤粉(超过80%);去向上碳主要转化为CO2直接排放(超过87%),进入产品的最少(仅约2%);其中,喷吹煤粉转化为CO2的比例最高(约84%),而石灰石最低(仅43%)。工序内部,直接碳排放量最大的是炼铁工序,自发电环节次之,轧钢工序最低;焦化工序内部碳转化至产品中的比例最高,转化至CO2排放的占比最低;炼钢工序的转炉煤气循环利用率最高;轧钢工序内碳元素转化至CO2排放的比例最高。根据系统碳演化路径及各工序碳转化机制,提出一套新的产品碳排放量核算方法;阐明了煤气放散、煤气低效发电等副产气能量损失对碳排放的关联机制,提出一系列减排路径。
中图分类号:
陈千, 周冠文, 刘雪娇, 方磊, 居鹤鸣, 钟文琪. 钢铁生产园区碳流模型构建及其演化分析[J]. 化工学报, 2025, 76(10): 5236-5248.
Qian CHEN, Guanwen ZHOU, Xuejiao LIU, Lei² FANG, Heming² JU, Wenqi ZHONG. Carbon flow model construction and evolutionary analysis in steel production parks[J]. CIESC Journal, 2025, 76(10): 5236-5248.
| 工序 | 输入物料 | 输入质量/t | 碳含量/% | 输出物料 | 输出质量/t | 碳含量/% |
|---|---|---|---|---|---|---|
| 焦化 | 炼焦煤(洗精煤/焦煤/肥煤) | 168237.8 | 79.5 | 焦炭 | 131116.67 | 87.2 |
| 焦油 | 6383.3 | 83.7 | ||||
| 苯 | 2579.2 | 92.3 | ||||
| 沥青 | 6153.8 | 89.1 | ||||
| 烧结 | 烧结煤(无烟煤) | 43063.9 | 72.8 | 烧结矿 | 1033553.6 | 0.72 |
| 铁粉矿 | 603487.6 | 3.27 | ||||
| 石灰石 | 97411.1 | 11.8 | ||||
| 球团 | 铁精矿 | 830838.1 | 2.85 | 球团矿 | 167577.2 | 0.35 |
| 炼铁 | 自产焦炭 | 131116. 67 | 87.2 | 铁水 | 869445.7 | 4.15 |
| 烧结矿 | 1033553.6 | 0.72 | ||||
| 球团矿 | 167577.2 | 0.35 | ||||
| 块矿 | 321426.8 | 0.23 | ||||
| 喷吹煤粉 | 135701.1 | 74.5 | ||||
| 外购焦炭 | 305938.89 | 87.2 | ||||
| 石灰石 | 194822.2 | 11.8 | ||||
| 炼钢厂 | 铁水 | 869445.7 | 4.15 | 粗钢 | 1009823.1 | 2.18 |
| 废钢 | 200914.6 | 1.25 | ||||
| 轧钢厂 | 粗钢 | 1009823.1 | 2.18 | 成品钢 | 895638.4 | 0.05 |
表1 系统主要含碳投料投入及含碳产品产出情况
Table 1 The main carbon-containing input and output of carbon sequestration products/finished products
| 工序 | 输入物料 | 输入质量/t | 碳含量/% | 输出物料 | 输出质量/t | 碳含量/% |
|---|---|---|---|---|---|---|
| 焦化 | 炼焦煤(洗精煤/焦煤/肥煤) | 168237.8 | 79.5 | 焦炭 | 131116.67 | 87.2 |
| 焦油 | 6383.3 | 83.7 | ||||
| 苯 | 2579.2 | 92.3 | ||||
| 沥青 | 6153.8 | 89.1 | ||||
| 烧结 | 烧结煤(无烟煤) | 43063.9 | 72.8 | 烧结矿 | 1033553.6 | 0.72 |
| 铁粉矿 | 603487.6 | 3.27 | ||||
| 石灰石 | 97411.1 | 11.8 | ||||
| 球团 | 铁精矿 | 830838.1 | 2.85 | 球团矿 | 167577.2 | 0.35 |
| 炼铁 | 自产焦炭 | 131116. 67 | 87.2 | 铁水 | 869445.7 | 4.15 |
| 烧结矿 | 1033553.6 | 0.72 | ||||
| 球团矿 | 167577.2 | 0.35 | ||||
| 块矿 | 321426.8 | 0.23 | ||||
| 喷吹煤粉 | 135701.1 | 74.5 | ||||
| 外购焦炭 | 305938.89 | 87.2 | ||||
| 石灰石 | 194822.2 | 11.8 | ||||
| 炼钢厂 | 铁水 | 869445.7 | 4.15 | 粗钢 | 1009823.1 | 2.18 |
| 废钢 | 200914.6 | 1.25 | ||||
| 轧钢厂 | 粗钢 | 1009823.1 | 2.18 | 成品钢 | 895638.4 | 0.05 |
| 煤气 | 放散体积/m³ | 放散含碳量/t | 发电体积/m³ | 发电含碳量/t | 工序间冶炼/燃烧体积/m³ | 工序间冶炼/燃烧含碳量/t |
|---|---|---|---|---|---|---|
| COG | 9387953.3 | 2006.67 | 19929733.33 | 4259.98 | 23128980 | 12390.52 |
| BFG | 86404064 | 21245.14 | 281634857 | 69243.42 | 512837589 | 274285.71 |
| LDG | 3155697.18 | 1409.92 | 5049115.5 | 2255.87 | 54909131.06 | 29415.60 |
| 总和 | — | 24661.73 | — | 75759.27 | — | 316091.83 |
表2 焦炉煤气(COG)、高炉煤气(BFG)及转炉煤气(LDG)的放散、发电与工序间利用量及含碳量分布
Table 2 Emission, power generation, inter-process usage and carbon content distribution of COG, BFG and LDG
| 煤气 | 放散体积/m³ | 放散含碳量/t | 发电体积/m³ | 发电含碳量/t | 工序间冶炼/燃烧体积/m³ | 工序间冶炼/燃烧含碳量/t |
|---|---|---|---|---|---|---|
| COG | 9387953.3 | 2006.67 | 19929733.33 | 4259.98 | 23128980 | 12390.52 |
| BFG | 86404064 | 21245.14 | 281634857 | 69243.42 | 512837589 | 274285.71 |
| LDG | 3155697.18 | 1409.92 | 5049115.5 | 2255.87 | 54909131.06 | 29415.60 |
| 总和 | — | 24661.73 | — | 75759.27 | — | 316091.83 |
| [1] | Na H M, Yuan Y X, Du T, et al. Multi-process production occurs in the iron and steel industry, supporting ‘dual carbon’ target: an in-depth study of CO2 emissions from different processes[J]. Journal of Environmental Sciences, 2024, 140: 46-58. |
| [2] | 张攀路, 都沁军, 张凯旋, 等. 中国钢铁行业碳排放: 达峰情景与中和路径[J]. 环境科学, 2024, 45(11): 6336-6343. |
| Zhang P L, Du Q J, Zhang K X, et al. Carbon emission for China's iron and steel industry: peak scenarios and neutralization pathways[J]. Environmental Science, 2024, 45(11): 6336-6343. | |
| [3] | Zhang B, Lu Y, Li H, et al. Iron ore substitution and carbon emission reduction by scrap steel recycling under carbon neutrality goal[J]. Journal of Industrial Ecology, 2025, 29(1): 217-232. |
| [4] | Imada S. Sharing CO2 abatement costs in the iron and steel sector: a shared responsibility input-output approach[J]. Ecological Economics, 2025, 230: 108504. |
| [5] | 宋晓聪, 杜帅, 邓陈宁, 等. 钢铁行业生命周期碳排放核算及减排潜力评估[J]. 环境科学, 2023, 44(12): 6630-6642. |
| Song X C, Du S, Deng C N, et al. Life cycle carbon emission accounting and emission reduction potential assessment of steel industry[J]. Environmental Science, 2023, 44(12): 6630-6642. | |
| [6] | 成润婷, 张勇军, 李立浧, 等. 碳边境调节机制下近零碳制造体系建设研究[J]. 中国工程科学, 2024, 26(1): 68-79. |
| Cheng R T, Zhang Y J, Li L C, et al. Construction of near-zero-carbon manufacturing system under the carbon border adjustment mechanism [J]. Strategic Study of CAE, 2024, 26(1): 68-79. | |
| [7] | Liu Z, Sun T C, Yu Y, et al. Near-real-time carbon emission accounting technology toward carbon neutrality[J]. Engineering, 2022, 14: 44-51. |
| [8] | Zhang Y, Hu S, Yan D, et al. Proposing a carbon emission responsibility allocation method with benchmark approach[J]. Ecological Economics, 2023, 213: 107971. |
| [9] | Sun J C, Na H M, Yan T Y, et al. A comprehensive assessment on material, exergy and emission networks for the integrated iron and steel industry[J]. Energy, 2021, 235: 121429. |
| [10] | Sun W Q, Wang Q, Zheng Z, et al. Material-energy-emission nexus in the integrated iron and steel industry[J]. Energy Conversion and Management, 2020, 213: 112828. |
| [11] | Sun W Q, Wang Q, Zhou Y, et al. Material and energy flows of the iron and steel industry: status quo, challenges and perspectives[J]. Applied Energy, 2020, 268: 114946. |
| [12] | Tian W J, An H F, Li X J, et al. CO2 accounting model and carbon reduction analysis of iron and steel plants based on intra- and inter-process carbon metabolism[J]. Journal of Cleaner Production, 2022, 360: 132190. |
| [13] | 陈剑, 马大卫, 王正风, 等. 煤电机组CO2排放原位在线监测系统研发与应用[J]. 电力科技与环保, 2022, 38(5): 423-431. |
| Chen J, Ma D W, Wang Z F, et al. Development and application of in-situ online monitoring system for CO2 emissions of coal power units [J]. Electric Power Technology and Environmental Protection, 2022, 38(5): 423-431. | |
| [14] | 程文煜, 张健, 熊卓, 等. “双碳” 目标下煤电机组节能改造技术发展与实践[J]. 电力科技与环保, 2024, 40(5): 455-464. |
| Cheng W Y, Zhang J, Xiong Z, et al. Development and practice of energy-saving retrofit technologies for coal power units under carbon peaking and carbon neutrality goals[J]. Electric Power Technology and Environmental Protection, 2024, 40(5): 455-464. | |
| [15] | Gu Y Q, Pan C C, Sui Y R, et al. CO2 emission accounting and emission reduction analysis of the steel production process based on the material-energy-carbon correlation effect[J]. Environmental Science and Pollution Research, 2023, 30(59): 124010-124027. |
| [16] | Zhang H X, Sun W Q, Li W D, et al. A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: an integrated material-energy-carbon hub[J]. Applied Energy, 2022, 309: 118485. |
| [17] | Yu S J, Lin F J, Zhao G, et al. Accurate carbon accounting based on industrial metabolism for the lean management of carbon emission[J]. Energy Reports, 2023, 9: 3872-3880. |
| [18] | Ren L, Zhou S, Peng T D, et al. A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China[J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110846. |
| [19] | Ding N, Xi Y H, Jiang W T, et al. State-of-the-art carbon metering: continuous emission monitoring systems for industrial applications[J]. Heliyon, 2025, 11(3): e42308. |
| [20] | Wang K, Liu S H, Liu K Y, et al. Tracking carbon flows in China's iron and steel industry[J]. Environmental Science & Technology, 2023, 57(31): 11510-11519. |
| [21] | Wu M K, Shi J P, Wen H J, et al. Research on power and energy balance of new power system under low carbon emission path[J]. Energy Reports, 2022, 8: 197-207. |
| [22] | 张玥, 王让会, 刘飞. 钢铁生产过程碳足迹研究: 以南京钢铁联合有限公司为例[J]. 环境科学学报, 2013, 33(4): 1195-1201. |
| Zhang Y, Wang R H, Liu F. Carbon footprint on steel manufacturing process: a case study of Nanjing Iron & Steel Union Company Limited[J]. Acta Scientiae Circumstantiae, 2013, 33(4): 1195-1201. | |
| [23] | 李小龙, 李军状, 郑成强, 等. “双碳” 目标下烟气流速/流量手工监测方法发展现状[J]. 电力科技与环保, 2023, 39(4): 314-323. |
| Li X L, Li J Z, Zheng C Q, et al. Current situation of manual monitoring methods of flue gas velocity and flow rate under the background of carbon peak and carbon neutrality[J]. Electric Power Technology and Environmental Protection, 2023, 39(4): 314-323. | |
| [24] | Gao Y, Liu G Y, Meng F X, et al. A carbon responsibility allocation approach with incentives mechanism based on carbon emissions and carbon offsets accounting[J]. Journal of Cleaner Production, 2024, 434: 139814. |
| [25] | Feng C, Zhu R, Wei G S, et al. Typical case of carbon capture and utilization in Chinese iron and steel enterprises: CO2 emission analysis[J]. Journal of Cleaner Production, 2022, 363: 132528. |
| [26] | Yuan Y X, Na H M, Du T, et al. Multi-objective optimization and analysis of material and energy flows in a typical steel plant[J]. Energy, 2023, 263: 125874. |
| [27] | Zhang X Y, Jiao K X, Zhang J L, et al. A review on low carbon emissions projects of steel industry in the world[J]. Journal of Cleaner Production, 2021, 306: 127259. |
| [28] | Song X C, Du S, Deng C N, et al. Carbon emissions in China's steel industry from a life cycle perspective: carbon footprint insights[J]. Journal of Environmental Sciences, 2025, 148: 650-664. |
| [29] | Van Ruijven B J, Van Vuuren D P, Boskaljon W, et al. Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries[J]. Resources, Conservation and Recycling, 2016, 112: 15-36. |
| [30] | Ness D, Swift J, Ranasinghe D C, et al. Smart steel: new paradigms for the reuse of steel enabled by digital tracking and modelling[J]. Journal of Cleaner Production, 2015, 98: 292-303. |
| [31] | Zhang Q, Li Y, Xu J, et al. Carbon element flow analysis and CO2 emission reduction in iron and steel works[J]. Journal of Cleaner Production, 2018, 172: 709-723. |
| [32] | 薛英岚, 张静, 刘宇, 等. “双碳” 目标下钢铁行业控煤降碳路线图[J]. 环境科学, 2022, 43(10): 4392-4400. |
| Xue Y L, Zhang J, Liu Y, et al. Coal control and carbon reduction roadmap in steel industry under the dual-carbon target[J]. Environmental Science, 2022, 43(10): 4392-4400. | |
| [33] | Shi T, Liu Y, Yang A, et al. Developing a novel gasification-based sludge-to-methanol utilization process and exergy-economic-environmental (3E) analysis[J]. Energy Conversion and Management, 2022, 260: 115600. |
| [34] | Yuan B H, Yang Z N, Yang A, et al. Target localization optimization of a superstructure triple-column extractive distillation with four-parallel evaporator organic Rankine cycles system based on advanced exergy analysis[J]. Separation and Purification Technology, 2021, 272: 118894. |
| [35] | Ren L, Cheng S H, Tong Y L, et al. Study on carbon emission accounting method system and its application in the iron and steel industry[J]. Sustainability, 2025, 17(9): 3829. |
| [36] | 陆国权. 钢铁行业在线分析仪预处理系统关键技术的研究与应用[J]. 中国计量, 2021(5): 99-102. |
| Lu G Q. Research and application of key technologies in pretreatment system of on-line analyzer in iron and steel industry[J]. China Metrology, 2021(5): 99-102. | |
| [37] | 李怀新, 李国慧. 铁水轨道衡在韶钢高炉出铁口称重的运用及维护技巧[J]. 衡器, 2018, 47(12): 24-27. |
| Li H X, Li G H. Application and maintenance skills of the molten iron track scale is weighed at the blast furnace outlet of Shaosteel[J]. Weighing Instrument, 2018, 47(12): 24-27. | |
| [38] | 郑晨, 李星星, 高子丰, 等. 钢铁企业高炉煤气柜重大危险源评估应用[J]. 冶金动力, 2023, 42(3): 22-25. |
| Zheng C, Li X X, Gao Z F, et al. Application of major hazard assessment for blast furnace gas holder in iron and steel enterprises[J]. Metallurgical Power, 2023, 42(3): 22-25. | |
| [39] | 宋永杰, 蒋会松. 宁钢高炉煤气系统综合调控与平衡实践[J]. 浙江冶金, 2023(2): 48-51. |
| Song Y J, Jiang H S. Integrated regulation and balance practice of blast furnace gas system at Ningbo Steel[J]. Zhejiang Metallurgy, 2023(2): 48-51. | |
| [40] | 韩荟瑾, 曹敬秋. 冶金企业优化平衡煤气资源的实践[J]. 山东冶金, 2015, 37(3): 73-74. |
| Han H J, Cao J Q. Practice of optimizing and balancing gas resources in metallurgical enterprises[J]. Shandong Metallurgy, 2015, 37(3): 73-74. | |
| [41] | 李永军, 冯燕波, 马广霄, 等. 高炉放散煤气治理技术[J]. 河北冶金, 2024(7): 81-86. |
| Li Y J, Feng Y B, Ma G X, et al. Flare gas treatment technology of blast furnace[J]. Hebei Metallurgy, 2024(7): 81-86. |
| [1] | 何仁初, 张朝晖, 杨明磊, 王聪, 奚桢浩. 考虑碳排放因素的汽油调合在线优化[J]. 化工学报, 2023, 74(2): 818-829. |
| [2] | 朱兵,陈定江,蒋萌,任钰成,曹煜恒,周文戟,胡山鹰,金涌. 化学工程在低碳发展转型中的关键作用探讨——从物质资源利用与碳排放关联的视角[J]. 化工学报, 2021, 72(12): 5893-5903. |
| [3] | 云慧敏, 代建军, 李辉, 毕晓涛. 生物质耦合燃煤发电经济环境效益评估[J]. 化工学报, 2021, 72(12): 6311-6327. |
| [4] | 金涌, 周禹成, 胡山鹰. 低碳理念指导的煤化工产业发展探讨[J]. 化工学报, 2012, 63(1): 3-8. |
| [5] | 林 曦,刘振宇. 天然气水合物的有效能量及CO2排放强度分析 [J]. CIESC Journal, 2010, 29(12): 2265-. |
| [6] | 施小妹, 廖祖维, 王靖岱, 蒋斌波, 阳永荣. 碳排放限制的能源规划问题的图表优化法 [J]. 化工学报, 2009, 60(5): 1237-1244. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号