化工学报 ›› 2025, Vol. 76 ›› Issue (10): 5225-5235.DOI: 10.11949/0438-1157.20250533
收稿日期:2025-05-13
修回日期:2025-07-15
出版日期:2025-10-25
发布日期:2025-11-25
通讯作者:
修志龙
作者简介:黄路生(1998—),男,硕士,2546429367@qq.com
基金资助:
Lusheng HUANG(
), Zhijun XIAO, Yaqin SUN, Zhilong XIU(
)
Received:2025-05-13
Revised:2025-07-15
Online:2025-10-25
Published:2025-11-25
Contact:
Zhilong XIU
摘要:
生物基1,3-丙二醇的分离是其产业化的瓶颈,传统吸附树脂的吸附容量低,洗脱液用量大,目标产物回收能耗高。为此,本文利用1,3-丙二醇与硼酸存在亲和作用的特点,首先将苯硼酸固定化到多孔氯甲基聚苯乙烯树脂上,制备了PS-APBA和PS-CPBA两种功能性亲和树脂,并通过理化性质表征手段确认了苯硼酸基团的成功嫁接及树脂的热稳定性;其次考察了pH对树脂吸附容量的影响,确定了两种树脂在pH为13时的最大吸附量分别为226.4和192.6 mg/g;再次通过吸附动力学、吸附等温线、动态吸附、双组分竞争吸附实验考察了树脂的吸附特性,表明吸附过程符合准二级动力学,Langmuir模型拟合的最大吸附量分别为328.1和314.9 mg/g,Thomas模型拟合的最大动态吸附量为202.4和196.3 mg/g,树脂对1,3-丙二醇的吸附具有选择性;最后将两种树脂应用于浓缩发酵液中1,3-丙二醇的吸附分离,发现树脂经5次吸附-解吸后仍保留了较高的吸附量,1,3-丙二醇脱附率达到96%以上。本文的研究结果为生物基1,3-丙二醇的高效分离提供了新的技术方案。
中图分类号:
黄路生, 肖志俊, 孙亚琴, 修志龙. 苯硼酸基吸附树脂的制备及其在生物基1,3-丙二醇分离中的应用[J]. 化工学报, 2025, 76(10): 5225-5235.
Lusheng HUANG, Zhijun XIAO, Yaqin SUN, Zhilong XIU. Preparation of phenylboronic acid-based adsorption resin and its application in the separation of bio-based 1,3-propanediol[J]. CIESC Journal, 2025, 76(10): 5225-5235.
| 树脂 | 拟一级动力学模型 | 拟二级动力学模型 | ||||
|---|---|---|---|---|---|---|
| Qe/(mg/g) | k1/min-1 | R2 | Qe/(mg/g) | k2/(g/(mg·min)) | R2 | |
| PS-APBA | 247.9 | 0.09879 | 0.9702 | 268.6 | 5.264×10-4 | 0.9881 |
| PS-CPBA | 229.5 | 0.08974 | 0.9300 | 250.9 | 4.893×10-4 | 0.9731 |
表1 吸附动力学拟合参数
Table 1 Fitting parameters of adsorption kinetics
| 树脂 | 拟一级动力学模型 | 拟二级动力学模型 | ||||
|---|---|---|---|---|---|---|
| Qe/(mg/g) | k1/min-1 | R2 | Qe/(mg/g) | k2/(g/(mg·min)) | R2 | |
| PS-APBA | 247.9 | 0.09879 | 0.9702 | 268.6 | 5.264×10-4 | 0.9881 |
| PS-CPBA | 229.5 | 0.08974 | 0.9300 | 250.9 | 4.893×10-4 | 0.9731 |
| 树脂 | 温度/K | Langmuir model | Freundlich model | ||||
|---|---|---|---|---|---|---|---|
| Qm/ (mg/g) | KL/(L/g) | R2 | KF | n | R2 | ||
| PS-APBA | 303 | 285.3 | 0.03206 | 0.9851 | 24.40 | 2.052 | 0.9496 |
| 310 | 293.0 | 0.03585 | 0.9838 | 29.02 | 2.169 | 0.9502 | |
| 318 | 328.1 | 0.03451 | 0.9793 | 30.39 | 2.110 | 0.9305 | |
| PS-CPBA | 303 | 296.0 | 0.02146 | 0.9445 | 15.20 | 1.743 | 0.9335 |
| 310 | 303.4 | 0.02492 | 0.9526 | 18.99 | 1.848 | 0.9402 | |
| 318 | 314.9 | 0.02741 | 0.9825 | 21.97 | 1.910 | 0.9626 | |
表2 Langmuir和Freundlich模型拟合树脂吸附等温线的参数
Table 2 The fitting parameters for the adsorption isothermal curves of two resins using Langmuir and Freundlich models
| 树脂 | 温度/K | Langmuir model | Freundlich model | ||||
|---|---|---|---|---|---|---|---|
| Qm/ (mg/g) | KL/(L/g) | R2 | KF | n | R2 | ||
| PS-APBA | 303 | 285.3 | 0.03206 | 0.9851 | 24.40 | 2.052 | 0.9496 |
| 310 | 293.0 | 0.03585 | 0.9838 | 29.02 | 2.169 | 0.9502 | |
| 318 | 328.1 | 0.03451 | 0.9793 | 30.39 | 2.110 | 0.9305 | |
| PS-CPBA | 303 | 296.0 | 0.02146 | 0.9445 | 15.20 | 1.743 | 0.9335 |
| 310 | 303.4 | 0.02492 | 0.9526 | 18.99 | 1.848 | 0.9402 | |
| 318 | 314.9 | 0.02741 | 0.9825 | 21.97 | 1.910 | 0.9626 | |
| 树脂 | T/K | ∆H/(kJ/mol) | ∆S/(J/mol/K) | ∆G/(kJ/mol) |
|---|---|---|---|---|
| PS-APBA | 303 | 30.46 | 114.50 | -6.62 |
| 310 | -6.72 | |||
| 318 | -5.76 | |||
| PS-CPBA | 303 | 11.15 | 56.45 | -5.88 |
| 310 | -5.21 | |||
| 318 | -4.16 |
表3 树脂吸附1,3-丙二醇的热力学参数
Table 3 Thermodynamic parameters of two resins for the adsorption of 1,3-propanediol
| 树脂 | T/K | ∆H/(kJ/mol) | ∆S/(J/mol/K) | ∆G/(kJ/mol) |
|---|---|---|---|---|
| PS-APBA | 303 | 30.46 | 114.50 | -6.62 |
| 310 | -6.72 | |||
| 318 | -5.76 | |||
| PS-CPBA | 303 | 11.15 | 56.45 | -5.88 |
| 310 | -5.21 | |||
| 318 | -4.16 |
| 树脂 | Yoon-Nelson model | Thomas model | ||||
|---|---|---|---|---|---|---|
| kYN/min-1 | τ/min | R2 | kTh/(L/(mg·min)) | Qm/(mg/g) | R2 | |
| PS-APBA | 0.1104 | 30.91 | 0.9858 | 2.024×10-3 | 202.4 | 0.9769 |
| PS-CPBA | 0.1231 | 30.52 | 0.9936 | 1.887×10-3 | 196.3 | 0.9837 |
表4 Yoon-Nelson和Thomas模型的拟合参数
Table 4 The fitting parameters of Yoon-Nelson and Thomas models
| 树脂 | Yoon-Nelson model | Thomas model | ||||
|---|---|---|---|---|---|---|
| kYN/min-1 | τ/min | R2 | kTh/(L/(mg·min)) | Qm/(mg/g) | R2 | |
| PS-APBA | 0.1104 | 30.91 | 0.9858 | 2.024×10-3 | 202.4 | 0.9769 |
| PS-CPBA | 0.1231 | 30.52 | 0.9936 | 1.887×10-3 | 196.3 | 0.9837 |
| [1] | Sun Y Q, Shen J T, Yan L, et al. Advances in bioconversion of glycerol to 1,3-propanediol: prospects and challenges[J]. Process Biochemistry, 2018, 71: 134-146. |
| [2] | 王本雷, 李晨, 张新富, 等 1,3-丙二醇合成研究进展[J]. 现代化工, 2023, 43(6): 92-97, 102. |
| Wang B L, Li C, Zhang X F, et al. Progress in the synthesis of 1,3-propanediol[J]. Modern Chemical Industry, 2023, 43(6): 92-97, 102. | |
| [3] | Xiu Z L, Zeng A P. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol[J]. Applied Microbiology and Biotechnology 2008, 78(6): 917-926. |
| [4] | 修志龙, 苏志国. 生物基化学品分离提纯的难点和对策[J]. 生物产业技术, 2010(1): 34-39. |
| Xiu Z L, Su Z G. Difficulties and countermeasures of separation and purification of bio-based chemicals[J]. Bioindustry & Business, 2010(1): 34-39. | |
| [5] | Li Z G, Jiang B, Zhang D J, et al. Aqueous two-phase extraction of 1, 3-propanediol from glycerol-based fermentation broths[J]. Separation and Purification Technology, 2009, 66(3): 472-478. |
| [6] | Li Z G, Teng H, Xiu Z L. Extraction of 1, 3-propanediol from glycerol-based fermentation broths with methanol/phosphate aqueous two-phase system[J]. Process Biochemistry, 2011, 46(2): 586-591. |
| [7] | Fu H X, Sun Y Q, Xiu Z L. Continuous countercurrent salting-out extraction of 1,3-propanediol from fermentation broth in a packed column[J]. Process Biochemistry, 2013, 48(9): 1381-1386. |
| [8] | Li Z G, Sun Y Q, Zheng W L, et al. A novel and environment-friendly bioprocess of 1, 3-propanediol fermentation integrated with aqueous two-phase extraction by ethanol/sodium carbonate system[J]. Biochemical Engineering Journal, 2013, 80: 68-75. |
| [9] | Li Z, Yan L, Zhou J J, et al. Two-step salting-out extraction of 1,3-propanediol, butyric acid and acetic acid from fermentation broths[J]. Separation and Purification Technology, 2019, 209: 246-253. |
| [10] | Dai J Y, Sun Y Q, Xiu Z L. Ionic liquid-based salting-out extraction of bio-based chemicals [J]. Chinese Journal of Chemical Engineering, 2021, 30: 185-193. |
| [11] | Sui W B, Sun Y Q, Wang X L, et al. Synergistic extraction of 1, 3-propanediol from fermentation broths using multialcohol extractants[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(36): 11891-11901. |
| [12] | Huang L S, Zhou X, Wu N S, et al. Selective extraction of 1,3-propanediol by phenylboronic acid-based ternary extraction system[J]. Journal of Chemical Technology & Biotechnology 2024, 99(7): 1530-1540. |
| [13] | Sui W B, Huang L S, Wang X L, et al. Extractive adsorption of 1,3 - propanediol on a novel polystyrene macroporous resin enclosing medium and long-chain alcohols as extractant[J]. Bioresources and Bioprocessing, 2023, 10(1): 28 |
| [14] | John Griffin G, Shu L. Solvent extraction and purification of sugars from hemicellulose hydrolysates using boronic acid carriers[J]. Journal of Chemical Technology & Biotechnology, 2004, 79(5): 505-511. |
| [15] | Drabo P, Tiso T, Heyman B, et al. Anionic extraction for efficient recovery of biobased 2,3-butanediol—a platform for bulk and fine chemicals[J]. ChemSusChem, 2017, 10(16): 3252-3259. |
| [16] | Matsumoto M, Shimizu K, Harada Y, et al. Effect of quaternary ammonium salts on the extraction of 1,3-propanediol with phenylboronic acid[J]. Solvent Extraction Research and Development, Japan, 2016, 23(2): 175-180. |
| [17] | Ishizuka K, Takahashi S, Anzai J I. Phenylboronic acid monolayer-modified electrodes sensitive to ribonucleosides[J]. Electrochemistry, 2006, 74(8): 688-690. |
| [18] | Sato F, Nakano H, Kamijo T, et al. Vancomycin sensing using a phenylboronic acid-modified nanopore pipette[J]. Electroanalysis, 2023, 35(11): e202300173. |
| [19] | Maurya A, Kesharwani N, Kachhap P, et al. Polymer-anchored mononuclear and binuclear CuⅡ Schiff-base complexes: impact of heterogenization on liquid phase catalytic oxidation of a series of alkenes[J]. Applied Organometallic Chemistry, 2019, 33(9): e5094. |
| [20] | Patil P, Yadav A, Chandam D, et al. [MerDABCO-BSA][HSO4]2: a novel polymer supported Brønsted acidic ionic liquid catalyst for the synthesis of biscoumarins and ortho-aminocarbonitriles[J]. Journal of Molecular Structure, 2022, 1259: 132622. |
| [21] | 李荣. 新型氯甲基聚苯乙烯树脂对钯的吸附性能研究[D]. 昆明: 云南大学, 2017. |
| Li R. Study on the adsorption performance of palladium by new-type chloromethyl polystyrene resin[D]. Kunming: Yunnan University, 2017. | |
| [22] | Wang X L, Sun Y Q, Pan D T, et al. Kinetics-based development of two-stage continuous fermentation of 1, 3-propanediol from crude glycerol by Clostridium butyricum [J]. Biotechnology for Biofuels and Bioproducts, 2024, 17(1): 38. |
| [23] | Roggi A, Guazzelli E, Resta C, et al. Vinylbenzyl chloride/styrene-grafted SBS copolymers via TEMPO-mediated polymerization for the fabrication of anion exchange membranes for water electrolysis[J]. Polymers, 2023, 15(8): 1826. |
| [24] | Hinkes S P A, Klein C D P. Virtues of volatility: a facile transesterification approach to boronic acids[J]. Organic Letters, 2019, 21(9): 3048-3052. |
| [25] | Gerente C, Lee V K C, Le Cloirec P, et al. Application of chitosan for the removal of metals from wastewaters by adsorption: mechanisms and models review[J]. Critical Reviews in Environmental Science and Technology, 2007, 37(1): 41-127. |
| [26] | Ho Y S, McKay G. Sorption of dye from aqueous solution by peat[J]. Chemical Engineering Journal, 1998, 70(2): 115-124. |
| [27] | Mall I D, Srivastava V C, Agarwal N K, et al. Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 264(1/2/3): 17-28. |
| [28] | Chatzopoulos D, Varma A, Irvine R L. Activated carbon adsorption and desorption of toluene in the aqueous phase[J]. AIChE Journal, 1993, 39(12): 2027-2041. |
| [29] | Zhang L Z, Tan W, Duan Z J, et al. Study on dynamic adsorption of p-nitrophenol by multi-walled carbon nanotubes dispersed cyclodextrin[J]. Environmental Science and Pollution Research, 2019, 26(33): 34110-34116. |
| [30] | Omitola O B, Abonyi M N, Akpomie K G, et al. Adams-Bohart, Yoon-Nelson, and Thomas modeling of the fix-bed continuous column adsorption of amoxicillin onto silver nanoparticle-maize leaf composite[J]. Applied Water Science, 2022, 12(5): 94. |
| [31] | Ye F Y, Yang R J, Hua X, et al. Adsorption characteristics of stevioside and rebaudioside A from aqueous solutions on 3-aminophenylboronic acid-modified poly(divinylbenzene-co-acrylic acid)[J]. Separation and Purification Technology, 2013, 118: 313-323. |
| [32] | Gan Q, Lu X Y, Yuan Y, et al. A magnetic, reversible pH-responsive nanogated ensemble based on Fe3O4 nanoparticles-capped mesoporous silica[J]. Biomaterials, 2011, 32(7): 1932-1942. |
| [33] | Mohapatra S, Panda N, Pramanik P. Boronic acid functionalized superparamagnetic iron oxide nanoparticle as a novel tool for adsorption of sugar[J]. Materials Science and Engineering C, 2009, 29(7): 2254-2260. |
| [34] | Peters J A. Interactions between boric acid derivatives and saccharides in aqueous media: structures and stabilities of resulting esters[J]. Coordination Chemistry Reviews, 2014, 268: 1-22. |
| [35] | Siegel D. Applications of reversible covalent chemistry in analytical sample preparation[J]. Analyst, 2012, 137(23): 5457-5482. |
| [36] | Zheng K X, Jiang L, Yu S T, et al. The design and synthesis of high efficiency adsorption materials for 1,3-propanediol: physical and chemical structure regulation[J]. RSC Advances, 2020, 10(62): 38085-38096. |
| [37] | Olatunde A M, Omorogie M O, Agbadaola M T, et al. Valorization and evaluation of Terminalia Ivorensis fibrous waste for its environmental sequestration potential for industrial anionic dyes in aqua system[J]. Journal of Natural Fibers, 2022, 19(13): 7305-7322. |
| [1] | 裴星亮, 叶翠平, 裴赢丽, 李文英. 碱改性MIL-53(Cr)选择性吸附分离二甲苯异构体[J]. 化工学报, 2025, 76(S1): 258-267. |
| [2] | 吴梓航, 徐震原, 游锦方, 潘权稳, 王如竹. 基于吸附式储冷技术的深井钻探设备冷却系统[J]. 化工学报, 2025, 76(S1): 309-317. |
| [3] | 黄国瑞, 赵耀, 谢明熹, 陈尔健, 代彦军. 一种新型数据中心余热回收系统实验与分析[J]. 化工学报, 2025, 76(S1): 409-417. |
| [4] | 田宇红, 杜壮壮, 徐慧芳, 祝自强, 王宇聪. ZIF-8基多孔液体制备及其SO2吸附性能[J]. 化工学报, 2025, 76(8): 4284-4296. |
| [5] | 史松伟, 赵诚, 刘帅, 应雨轩, 严密. 富铁飞灰耦合Fe-Zn/Al2O3脱除沼气H2S研究[J]. 化工学报, 2025, 76(8): 4239-4247. |
| [6] | 唐羽丰, 陶春珲, 王永正, 李印辉, 段然, 赵泽一, 马和平. 超高比表面积碳基多孔吸附剂制备及其Kr气存储性能研究[J]. 化工学报, 2025, 76(7): 3339-3349. |
| [7] | 彭新艳, 刘云鸿, 陈凌宇, 韦跃兰, 陈淑琴, 胡柱东. 小分子外交联法制备超高交联聚苯乙烯血液灌流吸附剂[J]. 化工学报, 2025, 76(6): 3093-3103. |
| [8] | 何军, 李勇, 赵楠, 何孝军. 碳负载硒掺杂硫化钴在锂硫电池中的性能研究[J]. 化工学报, 2025, 76(6): 2995-3008. |
| [9] | 杨盛华, 孙阳杰, 薛晓君, 米杰, 王建成, 冯宇. 缺陷型金属氧化物脱除气体污染物研究进展[J]. 化工学报, 2025, 76(6): 2469-2482. |
| [10] | 郭彭涛, 王婷, 薛波, 应允攀, 刘大欢. 用于CH4/N2分离的多吸附位点超微孔MOF[J]. 化工学报, 2025, 76(5): 2304-2312. |
| [11] | 唐磊, 王振菲, 李聪利, 杨佳辉, 郑浩, 石琪, 董晋湘. Co-MOF-74和Mg-MOF-74的CO工作吸附容量及操作条件[J]. 化工学报, 2025, 76(5): 2279-2293. |
| [12] | 李艳, 雷美丽, 李鑫钢. 基于分离性能的顺序式模拟移动床结构调控策略[J]. 化工学报, 2025, 76(5): 2219-2229. |
| [13] | 巴雅琪, 吴涛, 邸安頔, 陆安慧. 多孔炭材料用于低碳烃分离的研究进展[J]. 化工学报, 2025, 76(5): 2136-2157. |
| [14] | 谈朋, 李雪梅, 刘晓勤, 孙林兵. 基于柔性MOFs的磁响应复合材料及其丙烯吸附性能研究[J]. 化工学报, 2025, 76(5): 2230-2240. |
| [15] | 齐昊, 王玉杰, 李申辉, 邹琦, 刘轶群, 赵之平. 双金属Co/Zn-ZIFs中C3H6和C3H8吸附和扩散行为分子模拟研究[J]. 化工学报, 2025, 76(5): 2313-2326. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号