化工学报 ›› 2019, Vol. 70 ›› Issue (2): 487-495.DOI: 10.11949/j.issn.0438-1157.20181220
收稿日期:
2018-10-17
修回日期:
2018-12-16
出版日期:
2019-02-05
发布日期:
2019-02-05
通讯作者:
王铁峰
作者简介:
<named-content content-type="corresp-name">张华海</named-content>(1995—),男,博士研究生,<email>950826zhh@sina.com</email>|王铁峰(1976—),男,博士,教授,<email>wangtf@tsinghua.edu.cn</email>
基金资助:
Received:
2018-10-17
Revised:
2018-12-16
Online:
2019-02-05
Published:
2019-02-05
Contact:
Tiefeng WANG
摘要:
通过对不同操作压力和不同液体性质气液鼓泡床的模拟值与实验数据进行对比,从而验证CFD-PBM耦合模型的通用性。结果表明,CFD-PBM耦合模型在加入了气泡破碎修正因子后,可以很好地预测压力对鼓泡床流体力学行为的影响趋势,当压力升高时,气含率显著升高。不同液体黏度和表面张力条件下CFD-PBM耦合模型的模拟结果与实验结果均吻合较好。随液体黏度增大,气泡破碎速率减小,气泡尺寸分布变宽,曳力显著下降,气含率随之降低。随表面张力减小,气泡破碎速率增大,气泡变小,气含率升高。CFD-PBM耦合模型具有很好的通用性,原因在于考虑了压力、液体黏度和表面张力对气泡聚并、破碎和气液相间作用力的影响。
中图分类号:
张华海, 王铁峰. CFD-PBM耦合模型模拟气液鼓泡床的通用性研究[J]. 化工学报, 2019, 70(2): 487-495.
Huahai ZHANG, Tiefeng WANG. Generality of CFD-PBM coupled model for simulations of gas-liquid bubble column[J]. CIESC Journal, 2019, 70(2): 487-495.
模型 | 主要方程和关联式 |
---|---|
质量守恒方程 | |
动量守恒方程 | |
液相k-ε模型 | |
k方程 | |
ε方程 | |
湍动能产生项 液相湍动黏度 | |
湍能修正 | |
气相湍动黏度 | |
相间作用力 | |
曳力 | |
虚拟质量力 | |
横向升力 | |
湍动扩散力 | |
壁面润滑力 |
表1 双流体模型控制方程
Table 1 Governing equations of two-fluid model
模型 | 主要方程和关联式 |
---|---|
质量守恒方程 | |
动量守恒方程 | |
液相k-ε模型 | |
k方程 | |
ε方程 | |
湍动能产生项 液相湍动黏度 | |
湍能修正 | |
气相湍动黏度 | |
相间作用力 | |
曳力 | |
虚拟质量力 | |
横向升力 | |
湍动扩散力 | |
壁面润滑力 |
模型 | 主要方程和关联式 |
---|---|
由湍流涡引起的破碎 | |
破碎速率 | |
子气泡大小分布 | |
补充方程 | |
由大气泡不稳定引起的破碎 | |
破碎速率 | |
子气泡大小分布 | |
湍流涡引起的聚并速率:ct=?tPt | |
碰撞频率 | |
聚并效率 | |
不同上升速度引起的聚并:cu=?uPu | |
碰撞频率 | |
聚并效率 | |
大气泡尾涡引起的聚并:cw=?wPw | |
碰撞频率 | |
聚并效率 |
表2 气泡破碎和聚并模型
Table 2 Models of bubble breakup and coalescence
模型 | 主要方程和关联式 |
---|---|
由湍流涡引起的破碎 | |
破碎速率 | |
子气泡大小分布 | |
补充方程 | |
由大气泡不稳定引起的破碎 | |
破碎速率 | |
子气泡大小分布 | |
湍流涡引起的聚并速率:ct=?tPt | |
碰撞频率 | |
聚并效率 | |
不同上升速度引起的聚并:cu=?uPu | |
碰撞频率 | |
聚并效率 | |
大气泡尾涡引起的聚并:cw=?wPw | |
碰撞频率 | |
聚并效率 |
液体 | 密度/(kg/m3) | 黏度/(Pa·s) | 表面张力/(mN/m) |
---|---|---|---|
水[7,11,25,26] | 1000 | 0.001 | 72.5 |
葡萄糖A[27,28] | 1340 | 0.17 | 76.0 |
葡萄糖B[27] | 1380 | 0.55 | 76.0 |
甲苯[29] | 866 | 0.00058 | 28.5 |
表3 不同液相的物性参数
Table 3 Properties of different liquids
液体 | 密度/(kg/m3) | 黏度/(Pa·s) | 表面张力/(mN/m) |
---|---|---|---|
水[7,11,25,26] | 1000 | 0.001 | 72.5 |
葡萄糖A[27,28] | 1340 | 0.17 | 76.0 |
葡萄糖B[27] | 1380 | 0.55 | 76.0 |
甲苯[29] | 866 | 0.00058 | 28.5 |
vi,vk | ——气泡体积,m3 |
---|---|
αg | ——鼓泡床内气含率 |
β(v,v′) | ——子气泡分布 |
δj,k | ——狄拉克函数 |
ε | ——湍流耗散速率,m2/s3 |
——分别为气泡颈部流动收缩和扩张系数 | |
λ | ——湍流涡尺寸,m |
λmin | ——破碎最小湍流涡尺寸,m |
μ | ——液体黏度,Pa·s |
ρg,ρl | ——分别为气体和液体密度,kg/m3 |
σ | ——液体表面张力,mN/m |
符号说明
vi,vk | ——气泡体积,m3 |
---|---|
αg | ——鼓泡床内气含率 |
β(v,v′) | ——子气泡分布 |
δj,k | ——狄拉克函数 |
ε | ——湍流耗散速率,m2/s3 |
——分别为气泡颈部流动收缩和扩张系数 | |
λ | ——湍流涡尺寸,m |
λmin | ——破碎最小湍流涡尺寸,m |
μ | ——液体黏度,Pa·s |
ρg,ρl | ——分别为气体和液体密度,kg/m3 |
σ | ——液体表面张力,mN/m |
1 | AnastasiouA D, PassosA D, MouzaA A. Bubble columns with fine pore sparger and non-Newtonian liquid phase: prediction of gas holdup[J]. Chemical Engineering Science, 2013, 98(19): 331-338. |
2 | WangT F, WangJ F, JinY. Slurry reactors for gas-to-liquid processes: a review[J]. Industrial & Engineering Chemistry Research, 2007, 46(18): 5824-5847. |
3 | JordanU, SchumpeA. The gas density effect on mass transfer in bubble columns with organic liquids[J]. Chemical Engineering Science, 2001, 56(21/22): 6267-6272. |
4 | BashaO M, AehabiagueL, Abdel-wahabA, et al. Fischer-Tropsch synthesis in slurry bubble column reactors: experimental investigations and modeling—a review[J]. International Journal of Chemical Reactor Engineering, 2015, 13(3): 201-288. |
5 | BesagniG, GallazziniL, InzoliF. Effect of gas sparger design on bubble column hydrodynamics using pure and binary liquid phases[J]. Chemical Engineering Science, 2018, 176(2): 116-126. |
6 | BesagniG, InzoliF, De GuidoG, et al. Gas holdup and flow regime transition in spider-sparger bubble column: effect of liquid phase properties[J]. Journal of Physics: Conference Series. IOP Publishing, 2017, 796(1): 012041. |
7 | WilkinsonP M, DierendonckL L. Pressure and gas density effects on bubble break-up and gas hold-up in bubble columns[J]. Chemical Engineering Science, 1990, 45(8): 2309-2315. |
8 | GemelloL, PlaisC, AugierF, et al. Hydrodynamics and bubble size in bubble columns: effects of contaminants and spargers[J]. Chemical Engineering Science, 2018, 184(20): 93-102. |
9 | JoshiJ B, RanadeV V. Computational fluid dynamics for designing process equipment: expectations, current status, and path forward[J]. Industrial & Engineering Chemistry Research, 2003, 42(6): 1115-1128. |
10 | WangT F, WangJ F, JinY. A CFD-PBM coupled model for gas-liquid flows[J]. AIChE Journal, 2006, 52(1): 125-140. |
11 | DegaleesanS, DudukovicM, PanY. Experimental study of gas‐induced liquid‐flow structures in bubble columns[J]. AIChE Journal, 2001, 47(9): 1913-1931. |
12 | LinT J, TsuchiyaK, FanL S. Bubble flow characteristics in bubble columns at elevated pressure and temperature[J]. AIChE Journal, 1998, 44(3): 545-560. |
13 | ChaumatH, BilletA M, DelmasH. Hydrodynamics and mass transfer in bubble column: Influence of liquid phase surface tension[J]. Chemical Engineering Science, 2007, 62(24): 7378-7390. |
14 | WilkinsonP M, van SchaykA, SpronkenJ P M, et al. The influence of gas density and liquid properties on bubble breakup[J]. Chemical Engineering Science, 1993, 48(7): 1213-1226. |
15 | KrishnaR, van BatenJ M. Eulerian simulations of bubble columns operating at elevated pressures in the churn turbulent flow regime[J]. Chemical Engineering Science, 2001, 56(21/22): 6249-6258. |
16 | SarhanA R, NaserJ, BrooksG. CFD modeling of bubble column: influence of physico-chemical properties of the gas/liquid phases properties on bubble formation[J]. Separation and Purification Technology, 2018, 201(7): 130-138. |
17 | XingC T, WangT F, WangJ F. Experimental study and numerical simulation with a coupled CFD-PBM model of the effect of liquid viscosity in a bubble column[J]. Chemical Engineering Science, 2013, 95(24): 313-322. |
18 | GuoK Y, WangT F, LiuY F, et al. CFD-PBM simulations of a bubble column with different liquid properties[J]. Chemical Engineering Journal, 2017, 329(1): 116-127. |
19 | XingC T, WangT F, GuoK Y, et al. A unified theoretical model for breakup of bubbles and droplets in turbulent flows[J]. AIChE Journal, 2015, 61(4): 1391-1403. |
20 | AnderssonR, AnderssonB. On the breakup of fluid particles in turbulent flows[J]. AIChE Journal, 2006, 52(6): 2020-2030. |
21 | RaveletF, ColinC, RissoF. On the dynamics and breakup of a bubble rising in a turbulent flow[J]. Physics of Fluids, 2011, 23(10): 103301. |
22 | YangG Y, GuoK Y, WangT F. Numerical simulation of the bubble column at elevated pressure with a CFD-PBM coupled model[J]. Chemical Engineering Science, 2017, 170(1): 251-262. |
23 | de BertodanoM L, LaheyR T, JonesO C. Development of a k-ε model for bubbly two-phase flow[J]. Journal of Fluids Engineering, 1994, 116(1): 128-134. |
24 | LiaoY, LucasD. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions[J]. Chemical Engineering Science, 2009, 64(15): 3389-3406. |
25 | HashemiS, MacchiA, ServioP. Gas-liquid mass transfer in a slurry bubble column operated at gas hydrate forming conditions[J]. Chemical Engineering Science, 2009, 64(16): 3709-3716. |
26 | RudkevitchD, MacchiA. Hydrodynamics of a high pressure three‐phase fluidized bed subject to foaming[J]. The Canadian Journal of Chemical Engineering, 2008, 86(3): 293-301. |
27 | UrseanuM I, GuitR P M, StankiewiczA, et al. Influence of operating pressure on the gas hold-up in bubble columns for high viscous media[J]. Chemical Engineering Science, 2003, 58(3/4/5/6): 697-704. |
28 | EsmaeiliA, FaragS, GuyC, et al. Effect of elevated pressure on the hydrodynamic aspects of a pilot-scale bubble column reactor operating with non-Newtonian liquids[J]. Chemical Engineering Journal, 2016, 288(15): 377-389. |
29 | GrundG, SchumpeA, DeckwerW D. Gas-liquid mass transfer in a bubble column with organic liquids[J]. Chemical Engineering Science, 1992, 47(13/14): 3509-3516. |
30 | WangT F, WangJ F, JinY. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow[J]. Chemical Engineering Science, 2003, 58(20): 4629-4637. |
31 | SolsvikJ, JakobsenH A. A review of the statistical turbulence theory required extending the population balance closure models to the entire spectrum of turbulence[J]. AIChE Journal, 2016, 62(5): 1795-1820. |
32 | GuoK Y, WangT F, LiuY F, et al. CFD-PBM simulations of a bubble column with different liquid properties[J]. Chemical Engineering Journal, 2017, 329(1): 116-127. |
[1] | 禹言芳, 刘桓辰, 孟辉波, 刘励图, 李毓, 吴剑华. Lightnin静态混合器内气泡分散流体动力学特性实验研究[J]. 化工学报, 2022, 73(8): 3565-3575. |
[2] | 张文龙,宁尚雷,靳海波,马磊,何广湘,杨索和,郭晓燕,张荣月. 鼓泡塔内空气-醋酸体系流体力学参数的CFD-PBM耦合模型数值模拟[J]. 化工学报, 2022, 73(6): 2589-2602. |
[3] | 姜佳彤, 胡斌, 王如竹, 刘华, 张治平, 李宏波. R1233zd(E)高温热泵用卧式冷凝器的换热动态模拟[J]. 化工学报, 2021, 72(S1): 98-105. |
[4] | 张文龙, 侯燕, 靳海波, 马磊, 何广湘, 杨索和, 郭晓燕, 张荣月. 加温加压下CFD-PBM耦合模型空气-水两相流数值模拟研究[J]. 化工学报, 2021, 72(9): 4594-4606. |
[5] | 赵雨萌, 王亦飞, 彭昕, 位宗瑶, 于广锁, 王辅臣. 洗涤冷却室垂直环隙空间内液相流动结构的研究[J]. 化工学报, 2021, 72(8): 4039-4046. |
[6] | 高颂,徐燕燕,李继香,叶爽,黄伟光. 基于TFM-PBM耦合模型的离心泵内微气泡破碎合并的模拟研究[J]. 化工学报, 2021, 72(10): 5082-5093. |
[7] | 杨光,王沫然. 共轴反转型生物反应器内流场数值模拟与性能分析[J]. 化工学报, 2020, 71(11): 5188-5199. |
[8] | 刘英杰, 祝京旭. 气泡驱动液固流化床内二元颗粒的流化行为[J]. 化工学报, 2019, 70(1): 91-98. |
[9] | 陶金亮, 黄建刚, 肖航, 杨超, 黄青山. 级间隙高度和表观气速对多级环流反应器混合和传质的影响[J]. 化工学报, 2018, 69(7): 2878-2889. |
[10] | 董鑫, 许晓飞, 刘凤霞, 曾倩, 王晓娟, 魏炜, 刘志军. 鼓泡反应器中幂律型流体流动与传质特性[J]. 化工学报, 2018, 69(6): 2446-2454. |
[11] | 徐英, 谢飞, 李建, 张涛, 李涛, 米宝桐. 基于旋转分相单元的电容式气液两相流含液率测量[J]. 化工学报, 2018, 69(4): 1357-1364. |
[12] | 朱闯杰, 岳志, 黄子宾, 程振民, 杨涛, 陈博, 葛海龙, 方向晨. 固含率对沸腾床反应器气泡行为的影响[J]. 化工学报, 2018, 69(11): 4763-4769. |
[13] | 张佳宝, 崔丽杰, 杨宁. 曳力模型和湍流模型对内环流反应器数值模拟的影响[J]. 化工学报, 2018, 69(1): 389-395. |
[14] | 王珏, 杨宁. 基于EMMS方法的鼓泡塔反应器CFD及群平衡模拟[J]. 化工学报, 2017, 68(7): 2667-2677. |
[15] | 刘宝庆, 郑毅骏, 梁慧力, 王曼曼, 金志江. 剪切变稀体系同心双轴搅拌釜内的气液分散模拟[J]. 化工学报, 2017, 68(6): 2280-2289. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 452
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 653
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||