1 |
AnastasiouA D, PassosA D, MouzaA A. Bubble columns with fine pore sparger and non-Newtonian liquid phase: prediction of gas holdup[J]. Chemical Engineering Science, 2013, 98(19): 331-338.
|
2 |
WangT F, WangJ F, JinY. Slurry reactors for gas-to-liquid processes: a review[J]. Industrial & Engineering Chemistry Research, 2007, 46(18): 5824-5847.
|
3 |
JordanU, SchumpeA. The gas density effect on mass transfer in bubble columns with organic liquids[J]. Chemical Engineering Science, 2001, 56(21/22): 6267-6272.
|
4 |
BashaO M, AehabiagueL, Abdel-wahabA, et al. Fischer-Tropsch synthesis in slurry bubble column reactors: experimental investigations and modeling—a review[J]. International Journal of Chemical Reactor Engineering, 2015, 13(3): 201-288.
|
5 |
BesagniG, GallazziniL, InzoliF. Effect of gas sparger design on bubble column hydrodynamics using pure and binary liquid phases[J]. Chemical Engineering Science, 2018, 176(2): 116-126.
|
6 |
BesagniG, InzoliF, De GuidoG, et al. Gas holdup and flow regime transition in spider-sparger bubble column: effect of liquid phase properties[J]. Journal of Physics: Conference Series. IOP Publishing, 2017, 796(1): 012041.
|
7 |
WilkinsonP M, DierendonckL L. Pressure and gas density effects on bubble break-up and gas hold-up in bubble columns[J]. Chemical Engineering Science, 1990, 45(8): 2309-2315.
|
8 |
GemelloL, PlaisC, AugierF, et al. Hydrodynamics and bubble size in bubble columns: effects of contaminants and spargers[J]. Chemical Engineering Science, 2018, 184(20): 93-102.
|
9 |
JoshiJ B, RanadeV V. Computational fluid dynamics for designing process equipment: expectations, current status, and path forward[J]. Industrial & Engineering Chemistry Research, 2003, 42(6): 1115-1128.
|
10 |
WangT F, WangJ F, JinY. A CFD-PBM coupled model for gas-liquid flows[J]. AIChE Journal, 2006, 52(1): 125-140.
|
11 |
DegaleesanS, DudukovicM, PanY. Experimental study of gas‐induced liquid‐flow structures in bubble columns[J]. AIChE Journal, 2001, 47(9): 1913-1931.
|
12 |
LinT J, TsuchiyaK, FanL S. Bubble flow characteristics in bubble columns at elevated pressure and temperature[J]. AIChE Journal, 1998, 44(3): 545-560.
|
13 |
ChaumatH, BilletA M, DelmasH. Hydrodynamics and mass transfer in bubble column: Influence of liquid phase surface tension[J]. Chemical Engineering Science, 2007, 62(24): 7378-7390.
|
14 |
WilkinsonP M, van SchaykA, SpronkenJ P M, et al. The influence of gas density and liquid properties on bubble breakup[J]. Chemical Engineering Science, 1993, 48(7): 1213-1226.
|
15 |
KrishnaR, van BatenJ M. Eulerian simulations of bubble columns operating at elevated pressures in the churn turbulent flow regime[J]. Chemical Engineering Science, 2001, 56(21/22): 6249-6258.
|
16 |
SarhanA R, NaserJ, BrooksG. CFD modeling of bubble column: influence of physico-chemical properties of the gas/liquid phases properties on bubble formation[J]. Separation and Purification Technology, 2018, 201(7): 130-138.
|
17 |
XingC T, WangT F, WangJ F. Experimental study and numerical simulation with a coupled CFD-PBM model of the effect of liquid viscosity in a bubble column[J]. Chemical Engineering Science, 2013, 95(24): 313-322.
|
18 |
GuoK Y, WangT F, LiuY F, et al. CFD-PBM simulations of a bubble column with different liquid properties[J]. Chemical Engineering Journal, 2017, 329(1): 116-127.
|
19 |
XingC T, WangT F, GuoK Y, et al. A unified theoretical model for breakup of bubbles and droplets in turbulent flows[J]. AIChE Journal, 2015, 61(4): 1391-1403.
|
20 |
AnderssonR, AnderssonB. On the breakup of fluid particles in turbulent flows[J]. AIChE Journal, 2006, 52(6): 2020-2030.
|
21 |
RaveletF, ColinC, RissoF. On the dynamics and breakup of a bubble rising in a turbulent flow[J]. Physics of Fluids, 2011, 23(10): 103301.
|
22 |
YangG Y, GuoK Y, WangT F. Numerical simulation of the bubble column at elevated pressure with a CFD-PBM coupled model[J]. Chemical Engineering Science, 2017, 170(1): 251-262.
|
23 |
de BertodanoM L, LaheyR T, JonesO C. Development of a k-ε model for bubbly two-phase flow[J]. Journal of Fluids Engineering, 1994, 116(1): 128-134.
|
24 |
LiaoY, LucasD. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions[J]. Chemical Engineering Science, 2009, 64(15): 3389-3406.
|
25 |
HashemiS, MacchiA, ServioP. Gas-liquid mass transfer in a slurry bubble column operated at gas hydrate forming conditions[J]. Chemical Engineering Science, 2009, 64(16): 3709-3716.
|
26 |
RudkevitchD, MacchiA. Hydrodynamics of a high pressure three‐phase fluidized bed subject to foaming[J]. The Canadian Journal of Chemical Engineering, 2008, 86(3): 293-301.
|
27 |
UrseanuM I, GuitR P M, StankiewiczA, et al. Influence of operating pressure on the gas hold-up in bubble columns for high viscous media[J]. Chemical Engineering Science, 2003, 58(3/4/5/6): 697-704.
|
28 |
EsmaeiliA, FaragS, GuyC, et al. Effect of elevated pressure on the hydrodynamic aspects of a pilot-scale bubble column reactor operating with non-Newtonian liquids[J]. Chemical Engineering Journal, 2016, 288(15): 377-389.
|
29 |
GrundG, SchumpeA, DeckwerW D. Gas-liquid mass transfer in a bubble column with organic liquids[J]. Chemical Engineering Science, 1992, 47(13/14): 3509-3516.
|
30 |
WangT F, WangJ F, JinY. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow[J]. Chemical Engineering Science, 2003, 58(20): 4629-4637.
|
31 |
SolsvikJ, JakobsenH A. A review of the statistical turbulence theory required extending the population balance closure models to the entire spectrum of turbulence[J]. AIChE Journal, 2016, 62(5): 1795-1820.
|
32 |
GuoK Y, WangT F, LiuY F, et al. CFD-PBM simulations of a bubble column with different liquid properties[J]. Chemical Engineering Journal, 2017, 329(1): 116-127.
|