[1] |
Murvay P, Silea I.A survey on gas leak detection and localization techniques[J].Journal of Loss Prevention in the Process Industries, 2012, 25 (6):966-973
|
[2] |
Geng Yanfeng (耿艳峰), Zhang Zhaohui (张朝晖).Leak detection technology for the long gas pipeline[J].Chinese Journal of Scientific Instrument (仪器仪表学报), 2001, 22 (4):328-330
|
[3] |
Yang Jie (杨杰), Wang Guizeng (王桂增).Leak detection and location methods for gas transport pipelines[J].Control and Instruments in Chemical Industry (化工自动化及仪表), 2004, 31 (3):1-5
|
[4] |
Yang Hongying (杨红英), Hua Ke (华科), Ye Hao (叶昊), Wang Guizeng (王桂增).Leak diagnosis of gas transport pipelines based on Hilbert-Huang transform[J].CIESC Journal (化工学报), 2011, 62 (8):2095-2100
|
[5] |
Wang Likun (王立坤), Zhao Jinyun (赵晋云), Fu Guangsong (付广松), Tan Dongjie (谭东杰), Li Jian (李健), Jin Shijiu (靳世久).Recognising characteristies of pipeline leakage acoustic signals based on neural network[J].Chinese Journal of Seientific Instrument (仪器仪表学报), 2006, 27 (6):2247-2249
|
[6] |
Wang Mingda (王明达), Zhang Laibin (张来斌), Liang Wei (梁伟), Chen Zhigang (陈志刚).Pipeline leakage detection method based on independent component analysis and support vector machine[J].Acta Petrolei Sinica (石油学报), 2010, 31 (4):659-663
|
[7] |
Zhang Yu (张宇), Jin Shijiu (靳世久), He Jingjing (何静菁), Chen Shili (陈世利), Li Jian (李健).Extraction method for pipeline leakage feature based on dynamic pressure signal[J].Acta Petrolei Sinica (石油学报), 2010, 31 (2):338-342
|
[8] |
Lin Weiguo (林伟国), Chen Ping (陈萍), Sun Jian (孙剑).Features extraction of pipeline leak signal with operational conditions adaptability[J].Journal of Chemical Industry and Engineering (China) (化工学报), 2008, 59 (7):1715-1720
|
[9] |
Lin Weiguo (林伟国), Zheng Zhishou (郑志受).Research on pipeline leak detection based on dynamic pressure signal[J].Chinese Journal of Scientific Instrument (仪器仪表学报), 2006, 272 (8):907-910
|
[10] |
Meng Lingya, Li Yuxing, Wang Wuchang, Fu Juntao.Experimental study on leak detection and location for gas pipeline based on acoustic method[J].Journal of Loss Prevention in the Process Industries, 2012, 25 (1):90-102
|
[11] |
Yang Jin (杨进), Wen Yumei (文玉梅), Li Ping (李平).Feature extraction and identification of leak acoustic signal in water distribution pipelines using correlation analysis and approximate entropy[J].Chinese Journal of Scientific Instrument (仪器仪表学报), 2009, 30 (2):272-279
|
[12] |
Wang X M, Chung F L, Wang S T.Theoretical analysis for solution of support vector data description[J].Neural Networks, 2011, 24 (4):360-369
|
[13] |
Vapnik V N.The Nature of Statistical Learning Theory[M].New York, USA:Springer Verlag, 1995
|
[14] |
Gurram P, Kwon H.Support-vector-based hyperspectral anomaly detection using optimized kernel parameters[J].IEEE Geosci.Remote Sens., 2011, 8 (6):1060-1064
|
[15] |
Khazai S, Safari A, Mojaradi B, Homayouni S.Improving the SVDD approach to hyperspectral image classification[J].IEEE Geosci.Remote Sens., 2012, 9 (4):594-598
|
[16] |
Jiang Zhiqiang, Feng Xilan, Feng Xianzhang, Li Lingjun.A study of SVDD-based algorithm to the fault diagnosis of mechanical equipment system[J].Sci. Verse Science Direct, 2012, 33:1068-1073
|
[17] |
Cho H W, Jeong M K, Kwon Y.Support vector data description for calibration monitoring of remotely located microrobotic system[J].Journal of Manufacturing Systems, 2006, 25:196-208
|
[18] |
Si Gangquan (司刚全), Cao Hui (曹晖), Zhang Yanbin (张彦斌), Ma Xikui (马西奎).Self-adaptive feature extraction method based on power spectral centroid[J].Journal of Data Acquisition & Processing (数据采集与处理), 2008, 23 (6):691-695
|
[19] |
Tax D M J, Duin R P W.Support vector domain description[J].Pattern Recongn. Lett., 1999, 20:1191-1199
|
[20] |
Tax D M J, Duin R P W.Support vector data description[J].Mach. Learn., 2004, 54:45-66
|
[21] |
Zhang Jianming (张建明), Xu Xianzhen (许仙珍), Xie Lei (谢磊), Wang Shuqing (王树青).Performance optimization of SVDD and its application in non-Gaussian process monitoring[J].CIESC Journal (化工学报), 2010, 61 (8):2072-2077
|
[22] |
Peng Xinjun, Xu Dong.Efficient support vector data descriptions for novelty detection[J].Neural Computing and Applications, 2012, 21 (8):2023-2032
|