[1] |
DOE. Buildings Energy Data Book[R]. Washington DC:U.S. Department of Energy, 2007.
|
[2] |
KATIPAMULA S, BRAMBLEY M R. Review article:methods for fault detection, diagnostics, and prognostics for building systems-a review(Ⅰ)[J]. HVAC&R Research, 2005, 11(1):3-25.
|
[3] |
KATIPAMULA S, BRAMBLEY M R. Review article:methods for fault detection, diagnostics, and prognostics for building systems-a review(Ⅱ)[J]. HVAC&R Research, 2005, 11(2):169-187.
|
[4] |
COMSTOCK M C, BRAUN J E, BERNHARD R. Development of Analysis Tools for the Evaluation of Fault Detection and Diagnostics in Chillers[M]. Purdue University, 1999:25.
|
[5] |
LI H R, BRAUN J E. Economic evaluation of benefits associated with automated fault detection and diagnosis in rooftop air conditioners[J]. ASHRAE Transactions, 2007, 113(2):200-210.
|
[6] |
ZHAO Y, WANG S W, XIAO F. Pattern recognition-based chillers fault detection method using support vector data description (SVDD)[J]. Applied Energy, 2013, 112:1041-1048.
|
[7] |
HAN H, CAO Z K, GU B, et al. PCA-SVM-based automated fault detection and diagnosis (AFDD) for vapor-compression refrigeration systems[J]. HVAC&R Research, 2010, 16(3):295-313.
|
[8] |
HAN H, GU B, KANG J, et al. Study on a hybrid SVM model for chiller FDD applications[J]. Applied Thermal Engineering, 2011, 31(4):582-592.
|
[9] |
HAN H, GU B, HONG Y C, et al. Automated FDD of multiple-simultaneous faults (MSF) and the application to building chillers[J]. Energy and Buildings, 2011, 43(9):2524-2532.
|
[10] |
韩华, 谷波, 康嘉. 基于遗传算法和支持矢量机参数优化的制冷机组故障检测与诊断研究[J]. 机械工程学报, 2011, 47(16):120-126. HAN H, GU B, KANG J. Chiller fault detection and diagnosis based on genetic algorithm and support vector machine with parameter tuning[J]. Journal of Mechanical Engineering, 2011, 47(16):120-126.
|
[11] |
谷波, 韩华, 洪迎春, 等. 基于SVM的制冷系统多故障并发检测与诊断[J]. 化工学报, 2012, 62(S2):112-119. GU B, HAN H, HONG Y C, et al. SVM-based FDD of multiple-simultaneous faults for chillers[J]. CIESC Journal, 2012, 62(S2):112-119.
|
[12] |
韩华, 谷波, 任能. 主元分析和支持向量机在制冷系统故障诊断中的应用[J]. 上海交通大学学报, 2011, 45(9):1355-1361. HAN H, GU B, REN N. Fault diagnosis for refrigeration systems based on principal component analysis and support vector machine[J]. Journal of Shanghai Jiaotong University, 2011, 45(9):1355-1361.
|
[13] |
ZHAO Y, XIAO F, WEN J, et al. A robust pattern recognition-based fault detection and diagnosis (FDD) method for chillers[J]. HVAC&R Research, 2014, 20(7):798-809.
|
[14] |
LI G N, HU Y P, CHEN H X, et al. An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm[J]. Energy and Buildings, 2016, 116:104-113.
|
[15] |
李冠男, 胡云鹏, 陈焕新, 等. 基于PCA-SVDD的冷水机组故障检测方法[J]. 华中科技大学学报(自然科学版), 2015, 43(8):119-122. LI G N, HU Y P, CHEN H X, et al. PCA-SVDD-based chiller fault detection method[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(8):119-122.
|
[16] |
李冠男, 胡云鹏, 陈焕新, 等. 基于SVDD的冷水机组传感器故障检测及效率分析[J]. 化工学报, 2015, 66(5):1815-1820. LI G N, HU Y P, CHEN H X, et al. SVDD-based chiller sensor fault detection method and its detection efficiency[J]. CIESC Journal, 2015, 66(5):1815-1820.
|
[17] |
LI G N, HU Y P, CHEN H X, et al. A sensor fault detection and diagnosis strategy for screw chiller system using support vector data description-based D-statistic and DV-contribution plots[J]. Energy and Buildings, 2016, 133:230-245.
|
[18] |
LEE K Y, KIM D W, LEE D, et al. Improving support vector data description using local density degree[J]. Pattern Recognition, 2005, 38(10):1768-1771.
|
[19] |
LEE K Y, KIM D W, LEE K H, et al. Density-induced support vector data description[J]. IEEE Transactions on Neural Networks, 2007, 18(1):284-289.
|
[20] |
CHA M, KIM J S, BAEK J G. Density weighted support vector data description[J]. Expert Systems with Applications, 2014, 41(7):3343-3350.
|
[21] |
TAX D M J, DUIN R P W. Support vector data description[J]. Machine Learning, 2004, 54(1):45-66.
|
[22] |
TAX D M J, DUIN R P W. Support vector domain description[J]. Pattern Recognition Letters, 1999, 20(11):1191-1199.
|
[23] |
TAX D M J, YPMA A, DUIN R P W. Pump failure detection using support vector data descriptions[C]//HAND D J, KOK J N, BERTHOLD M R. International Symposium on Intelligent Data Analysis. Berlin Germany:Springer-Verlag, 1999:415-425.
|
[24] |
HSU C W, CHANG C C, LIN C J. A practical guide to support vector classification[EB/OL].[2016-05-19]. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
|
[25] |
COMSTOCK M C, BRAUN J E, GROLL E A. A survey of common faults for chillers/discussion[J]. Ashrae Transactions, 2002, 108:819.
|
[26] |
COMSTOCK M C, BRAUN J E, BERNHARD R. Experimental Data from Fault Detection and Diagnostic Studies on a Centrifugal Chiller[M]. Purdue University, 1999:16-66.
|
[27] |
GLASS A S, GRUBER P, ROOS M, et al. Qualitative model-based fault detection in air-handling units[J]. IEEE Control Systems, 1995, 15(4):11-22.
|
[28] |
HAN H, GU B, WANG T, et al. Important sensors for chiller fault detection and diagnosis (FDD) from the perspective of feature selection and machine learning[J]. International Journal of Refrigeration, 2011, 34(2):586-599.
|
[29] |
DASH M, LIU H. Feature selection for classification[J]. Intelligent Data Analysis, 1997, 1(3):131-156.
|
[30] |
ZHAO X Z, YANG M, LI H R. Field implementation and evaluation of a decoupling-based fault detection and diagnostic method for chillers[J]. Energy and Buildings, 2014, 72:419-430.
|