[1] |
Li Z, Yan S W, Fan H. Enhancement of stability and activity of Cu/ZnO/Al2O3 catalysts by microwave irradiation for liquid phase methanol synthesis[J]. Fuel, 2013, 106: 178-186
|
[2] |
Liu L, Zhao T S, Ma Q X, Shen Y F. Promoting effect of polyoxyethylene octylphenol ether on Cu/ZnO catalysts for low-temperature methanol synthesis[J]. Journal of Natural Gas Chemistry, 2009, 18: 375-378
|
[3] |
Fujita S, Moribe S, Kanamori Y, Kakudate M, Takezawa N. Preparation of a coprecipitated Cu/ZnO catalyst for the methanol synthesis from CO2-effects of the calcination and reduction conditions on the catalytic performance[J]. Applied Catalysis A: General, 2001, 207: 121-128
|
[4] |
Olah G A. Beyond oil and gas: the methanol economy[J]. Angewandte Chemie: International Edition, 2005, 44: 2636-2639
|
[5] |
Pontzen F, Liebner W, Gronemann V, Rothaemel M, Ahlers B. CO2-based methanol and DME-Efficient technologies for industrial scale production[J]. Catalysis Today, 2011, 171: 242-250
|
[6] |
Wang L L, Yang L M, Zhang Y H, Ding W, Chen S P, Fang W P, Yang Y Q. Promoting effect of an aluminum emulsion on catalytic performance of Cu-based catalysts for methanol synthesis from syngas[J]. Fuel Processing Technology, 2010, 91: 723-728
|
[7] |
Meshkini F, Taghizadeh M, Bahmani M. Investigating the effect of metal oxide additives on the properties of Cu/ZnO/Al2O3 catalysts in methanol synthesis from syngas using factorial experimental design[J]. Fuel, 2010, 89: 170-175
|
[8] |
Phan X K, Bakhtiary-Davijany H, Myrstad R, Pfeifer P, Venvik H J, Holmen A. Preparation and performance of Cu-based monoliths for methanol synthesis[J]. Applied Catalysis A: General, 2011, 405: 1-7
|
[9] |
Liu X M, Lu G Q, Yan Z F, Beltramini J. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2[J]. Industrial & Engineering Chemistry Research, 2003, 42: 6518-6530
|
[10] |
Arena F, Barbera K, Italiano G, Spadaro L, Frusteri F. Synthesis characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol[J]. Journal of Catalysis, 2007, 249: 185-194
|
[11] |
Zhang Y P, Fei J H, Yu Y M, Zheng X M. Methanol synthesis from CO2 hydrogenation over Cu based catalyst supported on zirconia modified gamma-Al2O3[J]. Energy Conversion and Management, 2006, 47: 3360-3367
|
[12] |
Yang C, Ma Z Y, Zhao N, Wei W, Hu T D, Sun Y H. Methanol synthesis from CO2-rich syngas over a ZrO2 doped Cu/ZnO catalyst[J]. Catalysis Today, 2006, 115: 222-227
|
[13] |
Arena F, Italiano G, Barbera K, Bonura G, Spadaro L, Frusteri F. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH[J]. Applied Catalysis A: General, 2008, 350: 16-23
|
[14] |
Cen Yaqing(岑亚青), Li Xiaonian(李小年), Liu Huazhang(刘化章). Preparation of copper-based catalysts for methanol synthesis by acid-alkali-based alternate precipitation method[J]. Chinese Journal of Catalysis(催化学报), 2006, 27(3): 210-216
|
[15] |
Chen H Y, Lin J, Tan K L, Li J. Comparative studies of manganese-doped copper based catalysts: the promoter effect of Mn on methanol synthesis[J]. Applied Surface Science, 1998, 126: 323-331
|
[16] |
Li J L, Inui T. Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminium oxides, precipitated at different pHs and temperatures[J]. Applied Catalysis A: General, 1996, 137:105- 117
|
[17] |
Fang D, Liu Z, Meng S, Wang L, Xu L, Wang H. Influence of aging time on the properties of precursors of CuO/ZnO catalysts for methanol synthesis[J]. Journal of Natural Gas Chemistry, 2005, 14: 107-114
|
[18] |
Schild C, Wokaun A, Baiker A. On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study(Ⅱ): Surface species on copper/zirconia catalysts: implications for methanoi synthesis selectivity[J]. Journal of Molecular Catalysis, 1990, 63: 243-254
|
[19] |
Weigel J, Koeppel R A, Baiker A, Wokaun A. Surface species in CO and CO2 hydrogenation over copper/zirconia: on the methanol synthesis mechanism[J]. Langmuir, 1996, 12: 5319-5329
|
[20] |
Fisher I A, Bell A T. In situ infrared study of methanol synthesis from H2/CO over Cu/SiO2 and Cu/ZrO2/SiO2[J]. Journal of Catalysis, 1998, 178: 153-173
|
[21] |
Saussey J, Lavalley J C. An in situ FT-IR study of adsorbed species on a Cu-Zn-Al2O4 methanol catalyst under 1 MPa pressure and at 525 K: effect of the H2/CO/CO2 feed stream composition[J]. Journal of Molecular Catalysis, 1989, 50: 343-353
|
[22] |
Meitzner G, Iglesia E. New insights into methanol synthesis catalysts from X-ray absorption spectroscopy[J]. Catalysis Today, 1999, 53: 433-441
|
[23] |
Ta Na(塔娜), Liu Jingyue(刘景月), Shen Wenjie(申文杰). Tuning the shape of ceria nanomaterials for catalytic applications[J]. Chinese Journal of Catalysis(催化学报), 2013, 34(5): 838-850
|
[24] |
Chowdhury S, Lin K S. Synthesis and characterization of 1D ceria nanomaterials for CO oxidation and steam reforming of methanol[J]. Journal of Nanomaterials, 2011, 2011: 1-16
|
[25] |
Fornasiero P, Balducci G, Monte R D, Kaspar J, Sergo V, Gubitosa G, Ferrero A, Graziani M. Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2[J]. Journal of Catalysis, 1996, 164: 173-183
|
[26] |
Tsubaki N, Fujimoto K. Promotional SMSI effect on supported palladium catalysts for methanol synthesis[J]. Topics in Catalysis, 2003, 22: 325-335
|
[27] |
Shen W J, Ichihashi Y, Matsumura Y. A comparative study of palladium and copper catalysts in methanol synthesis[J]. Catalysis Letters, 2002, 79: 125-127
|
[28] |
Zhu Z H, He D H. CO hydrogenation to iso-C4 hydrocarbons over CeO2-TiO2 catalysts[J]. Fuel, 2008, 87: 2229-2235
|
[29] |
Liu Y Y, Murata K, Inaba M, Takahara I, Okabe K. Mixed alcohols synthesis from syngas over Cs- and Ni-modified Cu/CeO2 catalysts[J]. Fuel, 2013, 104: 62-69
|
[30] |
Yu X H, Tu S T, Wang Z D, Qi Y S. Development of a microchannel reactor concerning steam reforming of methanol[J]. Chemical Engineering Journal, 2006, 116: 123-132
|
[31] |
Shen W J, Ichihashi Y, Matsumura Y. Methanol synthesis from carbon monoxide and hydrogen over ceria-supported copper catalyst prepared by a coprecipitation method[J]. Catalysis Letters, 2002, 83(1/2): 33-35
|
[32] |
Pokrovski K A, Bell A T. An investigation of the factors influencing the activity of Cu/CexZr1-xO2 for methanol synthesis via CO hydrogenation[J]. Journal of Catalysis, 2006, 241(2): 276-286
|
[33] |
Pokrovski K A, Rhodes M D, Bell A T. Effects of cerium incorporation into zirconia on the activity of Cu/ZrO2 for methanol synthesis via CO hydrogenation[J]. Journal of Catalysis, 2005, 235: 368-377
|
[34] |
Wang J B, Lee H K, Huang T J. Synergistic catalysis of carbon dioxide hydrogenation into methanol by yttria-doped ceria/gamma-alumina-supported copper oxide catalysts: effect of support and dopant[J]. Catalysis Letters, 2002, 83(1/2): 79-86
|
[35] |
Jiang Xiaoyuan(蒋晓原), Zhou Renxian(周仁贤), Mao Jianxin(毛建新), et al. Effect of dispersity and catalytic activity of CuO/Al2O3 modified by CeO2[J]. Journal of Molecular Catalysis(分子催化), 1999, 13(3): 17-21
|
[36] |
Xia Zengmin(夏增敏), Wen Lixiong(文利雄), Song Jirui(宋继瑞), Chen Jianfeng(陈建峰). Preparation and characterization of eggshell CuO/ZnO/SiO2 particles modified by Ce[J]. Journal of Process Engineering(过程工程学报), 2007, 7(4): 812-816
|
[37] |
Klier K. Methanol synthesis[J]. Advanced in Catalysis, 1982, 31: 243-313
|
[38] |
Liu Zhijian(刘志坚), Liao Jianjun(廖建军),Tan Jingpin(谭径品), Li Dadong(李大东). Effect of CeO2 on property of Cu-ZnO catalyst and its performance in CO2 hydrogenation[J]. Industrial Catalysis(工业催化), 2001, 11(6): 41-44
|