化工学报 ›› 2016, Vol. 67 ›› Issue (5): 1973-1981.DOI: 10.11949/j.issn.0438-1157.20151392

• 过程系统工程 • 上一篇    下一篇

基于非负矩阵分解的多模态过程故障监测方法

朱红林, 王帆, 侍洪波, 谭帅   

  1. 华东理工大学化工过程先进控制和优化技术教育部重点实验室, 上海 200237
  • 收稿日期:2015-09-06 修回日期:2016-02-24 出版日期:2016-05-05 发布日期:2016-05-05
  • 通讯作者: 侍洪波
  • 基金资助:

    国家自然科学基金项目(61374140);国家自然科学基金青年基金项目(61403072)。

Fault detection method based on non-negative matrix factorization for multimode processes

ZHU Honglin, WANG Fan, SHI Hongbo, TAN Shuai   

  1. Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
  • Received:2015-09-06 Revised:2016-02-24 Online:2016-05-05 Published:2016-05-05
  • Supported by:

    supported by the National Natural Science Foundation of China (61374140) and the Youth Foundation of the National Natural Science Foundation of China (61403072).

摘要:

针对传统的多元统计故障监测方法往往需要假设测量数据服从单一高斯分布的不足,提出了一种基于非负矩阵分解(NMF)的多模态故障监测方法。首先使用标准的NMF算法对训练集数据进行聚类,将多模态数据划分到各个模态中;然后使用稀疏性正交非负矩阵分解(SONMF)算法对各模态分别建模,同时构造监控统计量进行故障监测。将提出的基于非负矩阵分解的多模态故障监测方法应用于数值例子和TE过程的仿真结果表明,该方法能够及时有效地检测出多模态过程中的故障。

关键词: 故障监测, 多模态过程, 非负矩阵分解

Abstract:

The traditional multivariate statistical fault detection methods are designed for single operating conditions and may produce erroneous conclusions if they are used for the multi-mode process monitoring. A novel multi-mode process monitoring approach based on non-negative matrix factorization (NMF) is proposed in this paper. First, the training set of data is clustered by the standard NMF algorithm and the multi-mode data are divided into each mode. Then, the sparseness orthogonal NMF (SONMF) algorithm is used to model every mode and the monitoring statistics are constructed to perform fault detection. The proposed method is applied to a numerical example and the TE process. The simulation results show that this method can effectively detect multi-mode process failure.

Key words: fault detection, multi-mode process, non-negative matrix factorization

中图分类号: