[1] |
李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1):1-9. LI H, XIAO D Y. Survey on data driven fault diagnosis methods[J]. Control and Decision, 2011, 26(1):1-9.
|
[2] |
HE X B, YU P Y. Variable MWPCA for adaptive process monitoring[J]. Industrial and Engineering Chemistry Research, 2008, 47(2):419-427.
|
[3] |
ODIOWEI P P, CAO Y. Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations[J]. IEEE Transactions on Industrial Informatics, 2009, 27(1):1557-1562.
|
[4] |
LI G, QIN S J, ZHOU D. Geometric properties of partial least squares for process monitoring[J]. Automatica, 2010, 46(1):204-210.
|
[5] |
KANO M, TANAKA S, HASEBE S, et al. Monitoring independent components for fault detection[J]. AIChE Journal, 2003, 49(4):969-976.
|
[6] |
HE X B, WANG W, YANG Y H. Variable-weighted fisher discriminant analysis for process fault diagnosis[J]. Journal of Process Control, 2009, 19(6):923-931.
|
[7] |
夏陆岳, 潘海天, 周猛飞, 等. 基于改进多尺度主元分析的丙烯聚合过程监测与故障诊断[J]. 化工学报, 2011, 62(8):2312-2317. XIA L Y, PAN H T, ZHOU M F, et al. Process monitoring and fault diagnosis of propylene polymerization based on improved multiscale principle component analysis[J]. CIESC Journal, 2011, 62(8):2312-2317.
|
[8] |
LEE J M, YOO C K, LEE I B. Statistical process monitoring with independent component analysis[J]. Journal of Process Control, 2004, 14(5):467-485.
|
[9] |
ZHANG Y W, QIN S J. Fault detection of nonlinear process using multiway kernel independent analysis[J]. Industrial and Engineering Chemistry Research, 2007, 46(23):7780-7787.
|
[10] |
GE Z Q, SONG Z H. Process monitoring based on independent component analysis-principal component analysis(ICA-PCA) and similarity factors[J]. Industrial and Engineering Chemistry Research, 2007, 46(7):2054-2063.
|
[11] |
LEE D D, SEUNG H S. Learning the parts of objects by nonnegative matrix factorization[J]. Nature, 1999, 401:788-791.
|
[12] |
WILD S, CURRY J, DOUGHERTY A. Improving non-negative matrix factorizations through structured initialization[J]. Pattern Recognition, 2004, 37(11):2217-2232.
|
[13] |
CICHOCKI A, AMARI S I, ZDUNEK R, et al. Extended SMART algorithms for non-negative matrix factorization[J]. Lecture Notes in Computer Science, 2006, 4029:548-562.
|
[14] |
HOYER P O. Non-negative matrix factorization with sparseness constraints[J]. Journal of Machine Learning Research, 2004, 5(1):1457-1469.
|
[15] |
CAI D, HE X, HAN J, et al. Graph regularized non-negative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1548-1560.
|
[16] |
LEE H, YOO J, CHOI S. Semi-supervised nonnegative matrix factorization[J]. IEEE Signal Processing Letters, 2010, 17(1):4-7.
|
[17] |
LI X B, YANG Y P, ZHANG W D. Fault detection method for non-Gaussian processes based on non-negative matrix factorization[J]. Asia-Pacific Journal Chemical Engineering, 2013, 8(3):362-370.
|
[18] |
王帆, 杨雅伟, 谭帅, 等. 基于稀疏性非负矩阵分解的故障监测方法[J]. 化工学报, 2015, 66(5):1798-1805. WANG F, YANG Y W, TAN S, et al. Fault detection method based on sparse non-negative matrix factorization[J]. CIESC Journal, 2015, 66(5):1798-1805.
|
[19] |
LI X B, YANG Y P, ZHANG W D. Statistical process monitoring via generalized non-negative matrix projection[J]. Chemometrics and Intelligent Laboratory System, 2013, 121(7):15-25.
|
[20] |
DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3):245-255.
|
[21] |
YU J B. Local and global principal component analysis for process monitoring[J]. Journal of Process Control, 2012, 22(7):1358-1373.
|