化工学报 ›› 2019, Vol. 70 ›› Issue (9): 3396-3403.DOI: 10.11949/0438-1157.20190486
收稿日期:
2019-05-08
修回日期:
2019-06-07
出版日期:
2019-09-05
发布日期:
2019-09-05
通讯作者:
王艳华
作者简介:
张茜(1994—),女,硕士研究生,基金资助:
Received:
2019-05-08
Revised:
2019-06-07
Online:
2019-09-05
Published:
2019-09-05
Contact:
Yanhua WANG
摘要:
将温控相分离Ir纳米催化剂用于α,β-不饱和醛、酮的选择性加氢反应中,系统考察了其催化加氢性能。在优化的反应条件下,Ir纳米催化剂对α,β-不饱和醛的C═O键加氢选择性大于99%,对α,β-不饱和酮的C═C键加氢选择性大于99%。 Ir纳米催化剂经简单分离可直接循环使用5次,选择性均大于99%。TEM表征结果显示反应四次后的Ir纳米催化剂的平均粒径变为(1.9 ± 0.2) nm,比新制备的Ir纳米催化剂的平均粒径(1.3 ± 0.1)nm有所增大。ICP-AES测试结果表明Ir流失低于仪器检测下限(检测下限为5 μg/L)。
中图分类号:
张茜, 王艳华. 温控相分离纳米Ir催化α,β-不饱和醛、酮选择加氢[J]. 化工学报, 2019, 70(9): 3396-3403.
Qian ZHANG, Yanhua WANG. Selective hydrogenation of α, β-unsaturated aldehydes and ketones over thermo regulated phase-separable Ir nano catalyst[J]. CIESC Journal, 2019, 70(9): 3396-3403.
Entry | Acid | Conversion①/% | Selectivity①,②/% |
---|---|---|---|
1 | —③ | 83 | >99 |
2 | HCOOH | 23 | >99 |
3 | CH3COOH | >99 | >99 |
4 | CH3CH2COOH | 93 | >99 |
表1 不同的酸添加剂对查尔酮选择性加氢反应的影响
Table 1 Effect of different acid additives on selective hydrogenation of chalcone
Entry | Acid | Conversion①/% | Selectivity①,②/% |
---|---|---|---|
1 | —③ | 83 | >99 |
2 | HCOOH | 23 | >99 |
3 | CH3COOH | >99 | >99 |
4 | CH3CH2COOH | 93 | >99 |
Entry | (CH3COOH/chalcone)/(mol/mol) | T /℃ | | t /h | (chalcone/Ir)/(mol/mol) | Conversion①/% | Selectivity①,②/% |
---|---|---|---|---|---|---|---|
1 | 1:1 | 130 | 3 | 6 | 200:1 | 88 | >99 |
2 | 3:1 | 130 | 3 | 6 | 200:1 | 90 | >99 |
3 | 5:1 | 130 | 3 | 6 | 200:1 | >99 | >99 |
4 | 5:1 | 100 | 3 | 6 | 200:1 | 89 | >99 |
5 | 5:1 | 110 | 3 | 6 | 200:1 | 91 | >99 |
6 | 5:1 | 120 | 3 | 6 | 200:1 | 95 | >99 |
7 | 5:1 | 130 | 0.5 | 6 | 200:1 | 79 | >99 |
8 | 5:1 | 130 | 1 | 6 | 200:1 | 80 | >99 |
9 | 5:1 | 130 | 2 | 6 | 200:1 | 88 | >99 |
10 | 5:1 | 130 | 3 | 3 | 200:1 | 89 | >99 |
11 | 5:1 | 130 | 3 | 4 | 200:1 | 95 | >99 |
12 | 5:1 | 130 | 3 | 5 | 200:1 | 96 | >99 |
13 | 5:1 | 130 | 3 | 6 | 250:1 | 88 | >99 |
14 | 5:1 | 130 | 3 | 6 | 300:1 | 85 | >99 |
表2 查尔酮选择性加氢反应条件的优化
Table 2 Optimization of conditions for selective hydrogenation of chalcone
Entry | (CH3COOH/chalcone)/(mol/mol) | T /℃ | | t /h | (chalcone/Ir)/(mol/mol) | Conversion①/% | Selectivity①,②/% |
---|---|---|---|---|---|---|---|
1 | 1:1 | 130 | 3 | 6 | 200:1 | 88 | >99 |
2 | 3:1 | 130 | 3 | 6 | 200:1 | 90 | >99 |
3 | 5:1 | 130 | 3 | 6 | 200:1 | >99 | >99 |
4 | 5:1 | 100 | 3 | 6 | 200:1 | 89 | >99 |
5 | 5:1 | 110 | 3 | 6 | 200:1 | 91 | >99 |
6 | 5:1 | 120 | 3 | 6 | 200:1 | 95 | >99 |
7 | 5:1 | 130 | 0.5 | 6 | 200:1 | 79 | >99 |
8 | 5:1 | 130 | 1 | 6 | 200:1 | 80 | >99 |
9 | 5:1 | 130 | 2 | 6 | 200:1 | 88 | >99 |
10 | 5:1 | 130 | 3 | 3 | 200:1 | 89 | >99 |
11 | 5:1 | 130 | 3 | 4 | 200:1 | 95 | >99 |
12 | 5:1 | 130 | 3 | 5 | 200:1 | 96 | >99 |
13 | 5:1 | 130 | 3 | 6 | 250:1 | 88 | >99 |
14 | 5:1 | 130 | 3 | 6 | 300:1 | 85 | >99 |
Entry | t /h | Conversion①/% | Selectivity①,②/% |
---|---|---|---|
1 | 6 | >99 | >99 |
2 | 6 | 99 | >99 |
3 | 6 | 92 | >99 |
4 | 6 | 83 | >99 |
5 | 8 | 92 | >99 |
表3 温控相分离Ir纳米催化剂的循环使用效果
Table 3 Reusability of Ir nanocatalyst for selective hydrogenation of chalcone
Entry | t /h | Conversion①/% | Selectivity①,②/% |
---|---|---|---|
1 | 6 | >99 | >99 |
2 | 6 | 99 | >99 |
3 | 6 | 92 | >99 |
4 | 6 | 83 | >99 |
5 | 8 | 92 | >99 |
Entry | Base | Conversion①/% | Selectivity①,②/% |
---|---|---|---|
1 | —③ | 50 | 60 |
2 | triethylamine | >99 | >99 |
3 | trioctylamine | 79 | >99 |
4 | triisooctylamine | 77 | 95 |
表4 不同的碱添加剂对肉桂醛选择性加氢反应的影响
Table 4 Effect of different base additives on selective hydrogenation of CAL
Entry | Base | Conversion①/% | Selectivity①,②/% |
---|---|---|---|
1 | —③ | 50 | 60 |
2 | triethylamine | >99 | >99 |
3 | trioctylamine | 79 | >99 |
4 | triisooctylamine | 77 | 95 |
Entry | (triethylamine/CAL)/(mol/mol) | T/℃ | | t /h | (CAL/Ir)/(mol/mol) | Conversion①/% | Selectivity①,②/% |
---|---|---|---|---|---|---|---|
1 | 1∶1 | 70 | 5 | 7 | 200∶1 | 73 | 96 |
2 | 4∶1 | 70 | 5 | 7 | 200∶1 | 96 | 99 |
3 | 5∶1 | 70 | 5 | 7 | 200∶1 | >99 | >99 |
4 | 5∶1 | 60 | 5 | 7 | 200∶1 | 60 | 93 |
5 | 5∶1 | 80 | 5 | 7 | 200∶1 | >99 | 91 |
6 | 5∶1 | 90 | 5 | 7 | 200∶1 | >99 | 90 |
7 | 5∶1 | 70 | 1 | 7 | 200∶1 | 74 | >99 |
8 | 5∶1 | 70 | 3 | 7 | 200∶1 | 81 | >99 |
9 | 5∶1 | 70 | 4 | 7 | 200∶1 | 90 | >99 |
10 | 5∶1 | 70 | 5 | 4 | 200∶1 | 90 | >99 |
11 | 5∶1 | 70 | 5 | 5 | 200∶1 | 93 | >99 |
12 | 5∶1 | 70 | 5 | 6 | 200∶1 | 98 | >99 |
13 | 5∶1 | 70 | 5 | 7 | 250∶1 | 95 | 91 |
14 | 5∶1 | 70 | 5 | 7 | 300∶1 | 87 | 90 |
表5 肉桂醛选择性加氢反应的条件优化
Table 5 Optimization of conditions for selective hydrogenation of CAL
Entry | (triethylamine/CAL)/(mol/mol) | T/℃ | | t /h | (CAL/Ir)/(mol/mol) | Conversion①/% | Selectivity①,②/% |
---|---|---|---|---|---|---|---|
1 | 1∶1 | 70 | 5 | 7 | 200∶1 | 73 | 96 |
2 | 4∶1 | 70 | 5 | 7 | 200∶1 | 96 | 99 |
3 | 5∶1 | 70 | 5 | 7 | 200∶1 | >99 | >99 |
4 | 5∶1 | 60 | 5 | 7 | 200∶1 | 60 | 93 |
5 | 5∶1 | 80 | 5 | 7 | 200∶1 | >99 | 91 |
6 | 5∶1 | 90 | 5 | 7 | 200∶1 | >99 | 90 |
7 | 5∶1 | 70 | 1 | 7 | 200∶1 | 74 | >99 |
8 | 5∶1 | 70 | 3 | 7 | 200∶1 | 81 | >99 |
9 | 5∶1 | 70 | 4 | 7 | 200∶1 | 90 | >99 |
10 | 5∶1 | 70 | 5 | 4 | 200∶1 | 90 | >99 |
11 | 5∶1 | 70 | 5 | 5 | 200∶1 | 93 | >99 |
12 | 5∶1 | 70 | 5 | 6 | 200∶1 | 98 | >99 |
13 | 5∶1 | 70 | 5 | 7 | 250∶1 | 95 | 91 |
14 | 5∶1 | 70 | 5 | 7 | 300∶1 | 87 | 90 |
Entry | Substrate | Product | t | Conversion③/% | Selectivity③/% |
---|---|---|---|---|---|
1① | | | 7 h | >99 | >99 |
2① | | | 10 min | >99 | >99 |
3① | | | 3 h | >99 | >99 |
4① | | | 20 min | >99 | >99 |
5① | | | 20 min | >99 | >99 |
6② | | | 10 h | >99 | >99 |
7② | | | 7 h | >99 | >99 |
表6 不同α, β-不饱和醛、酮的选择性加氢反应
Table 6 Selective hydrogenation of different α, β-unsaturated aldehydes and ketones
Entry | Substrate | Product | t | Conversion③/% | Selectivity③/% |
---|---|---|---|---|---|
1① | | | 7 h | >99 | >99 |
2① | | | 10 min | >99 | >99 |
3① | | | 3 h | >99 | >99 |
4① | | | 20 min | >99 | >99 |
5① | | | 20 min | >99 | >99 |
6② | | | 10 h | >99 | >99 |
7② | | | 7 h | >99 | >99 |
1 | Mäki-Arvela P , Hájek J , Salmi T , et al . Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts[J]. Appl. Catal. A: Gen., 2005, 292: 1-49. |
2 | Bhor M D , Panda A G , Jagtap S R , et al . Hydrogenation of α, β-unsaturated carbonyl compounds using recyclable water-soluble FeII/EDTA complex catalyst[J]. Catal. Lett., 2008, 124: 157-164. |
3 | Gallezot P , Richard D . Selective hydrogenation of α, β-unsaturated aldehydes[J]. Cat. Rev. - Sci. Eng., 1998, 40 (12): 81-126. |
4 | Saudan L A . Hydrogenation processes in the synthesis of perfumery ingredients [J]. Acc. Chem. Res., 2007, 40: 1309-1319. |
5 | Chen H G , Tustin J M , Wuts P G M , et al . Stereoselective synthesis of XaaΨ[CH2CH(OH)]Yaa dipeptidomimetics and their inclusion in HIV-1 protease inhibitors[J]. Int. J. Pept. Protein Res., 1995, 45: 1-10. |
6 | Ganji S , Mutyala S , Neeli C K P , et al . Selective hydrogenation of the C═C bond of α, β-unsaturated carbonyl compounds over PdNPs-SBA-15 in a water medium[J]. RSC Adv., 2013, 3: 1-6. |
7 | Ahmed N , Lier J E V . Pd-C/ammonium formate: a selective catalyst for the hydrogenation of chalcones to dihydrochalcones[J]. J. Chem. Res., 2006, 9: 584-585. |
8 | Wei Z Z , Gong Y T , Xiong T Y , et al . Highly efficient and chemoselective hydrogenation of α, β-unsaturated carbonyls over Pd/N-doped hierarchically porous carbon[J]. Catal. Sci. Technol., 2015, 5: 397-404. |
9 | Divakar D , Manikandan D , Rupa V , et al . Palladium-nanoparticle intercalated vermiculite for selective hydrogenation of α, β -unsaturated aldehydes[J]. J. Chem. Technol. Biotechnol., 2007, 82: 253-258. |
10 | Chen P , Li W J , Wang Y H . Atmospheric hydrogenation of α, β-unsaturated ketones catalyzed by highly efficient and recyclable Pd nanocatalyst[J]. Catal. Commun., 2019, 125: 10-14. |
11 | Song T , Duan Y N , Yang Y . Chemoselective transfer hydrogenation of α, β-unsaturated carbonyls catalyzed by a reusable supported Pd nanoparticles on biomass-derived carbon[J]. Catal. Commun., 2019, 120: 80-85. |
12 | Bai Y , Cherkasov N , Huband S , et al . Highly selective continuous flow hydrogenation of cinnamaldehyde to cinnamyl alcohol in a Pt/SiO2 coated tube reactor[J]. Catalysts, 2018, 8: 58-76. |
13 | Shi J J , Nie R F , Chen P , et al . Selective hydrogenation of cinnamaldehyde over reduced graphene oxide supported Pt catalyst[J]. Catal. Commun., 2013, 41: 101-105. |
14 | Lenz J , Campo B C , Alvarez M , et al . Liquid phase hydrogenation of α, β-unsaturated aldehydes over gold supported on iron oxides[J]. J. Catal., 2009, 267: 50-56. |
15 | Cano I , Chapman A M , Urakawa A , et al . Air-stable gold nanoparticles ligated by secondary phosphine oxides for the chemoselective hydrogenation of aldehydes: crucial role of the ligand[J]. J. Am. Chem. Soc., 2014, 136: 2520-2528. |
16 | Breen J P , Burch R , Gomez-Lopez J , et al . Steric effects in the selective hydrogenation of cinnamaldehyde to cinnamyl alcohol using an Ir/C catalyst[J]. Appl. Catal. A: Gen., 2004, 268: 267-274. |
17 | He S , Xie L F , Che M W , et al . Chemoselective hydrogenation of α, β-unsaturated aldehydes on hydrogenated MoO x nanorods supported iridium nanoparticles[J].J. Mol. Catal. A: Chem., 2016, 425: 248-254. |
18 | Song T , Ma Z M , Yang Y . Chemoselective hydrogenation of α, β-unsaturated carbonyls catalyzed by biomass-derived cobalt nanoparticles in water[J]. ChemCatChem, 2019, 11(4): 1313-1319. |
19 | Zaramello L , Albuquerque B L , Domingos J B , et al . Kinetic investigation into the chemoselective hydrogenation of α, β-unsaturated carbonyl compounds catalyzed by Ni(0) nanoparticles[J]. Dalt. Trans., 2017, 46: 5082-5090. |
20 | Malobela L J , Heveling J , Augustyn W G , et al . Nickel-cobalt on carbonaceous supports for the selective catalytic hydrogenation of cinnamaldehyde[J]. Ind. Eng. Chem. Res., 2014, 53:13910-13919. |
21 | 刘洪磊, 袁茂林, 郭彩红, 等 . Ru/ZrO2·xH2O催化剂催化肉桂醛选择性加氢制肉桂醇[J]. 催化学报, 2011, 32: 1256-1261. |
Liu H L , Yuan M L , Guo C H , et al . Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over Ru/ZrO2·xH2O catalyst[J]. Chin. J. Catal., 2011, 32: 1256-1261. | |
22 | Rojas H , Díaz G , Martínez J J , et al . Hydrogenation of α, β-unsaturated carbonyl compounds over Au and Ir supported on SiO2 [J].J. Mol. Catal. A: Chem., 2012, 363/364: 122-128. |
23 | Li W J , Wang Y H , Chen P , et al . Thermoregulated phase-transfer iridium nanoparticle catalyst: highly selective hydrogenation of the C═O bond for α, β-unsaturated aldehydes and the C═C bond for α, β-unsaturated ketones[J]. Catal. Sci. Technol., 2016, 6: 7386-7390. |
24 | 王艳华, 薛秀茹 . 手性离子液体: 201610288629. X[P]. 2016-04-29. |
Wang Y H , Xue X R . Chiral ionic liquids: 201610288629. X[P]. 2016-04-29. | |
25 | Mebi C A , Nair R P , Frost B J . pH-Dependent selective transfer hydrogenation of α, β-unsaturated carbonyls in aqueous media utilizing half-sandwich ruthenium (Ⅱ) complexes[J]. Organometallics, 2007, 26: 429-438. |
26 | Bhogeswararao S , Srinivas D . Intramolecular selective hydrogenation of cinnamaldehyde over CeO2-ZrO2-supported Pt catalysts[J]. J. Catal., 2012, 285: 31-40. |
27 | Joó F . Aqueous biphasic hydrogenations[J]. Acc. Chem. Res., 2002, 35: 738-745. |
28 | Joó F , Kovács J , Bényei A C , et al . Solution pH: a selectivity switch in aqueous organometallic catalysis-hydrogenation of unsaturated aldehydes catalyzed by sulfonatophenylphosphane-Ru complexes[J]. Angew. Chem. Int. Ed., 1998, 37: 969-970. |
29 | Joó F , Kovács J , Bényei A C , et al . The effects of pH on the molecular distribution of water soluble ruthenium(Ⅱ) hydrides and its consequences on the selectivity of the catalytic hydrogenation of unsaturated aldehydes[J]. Catal. Today, 1998, 42: 441-448. |
30 | Waghray A , Oukaci R , Blackmond D G . Selective hydrogenation of α, β-unsaturated aldehydes over supported Ru[J]. Stud. Surf. Sci. Catal., 1993, 75: 2479-2482. |
31 | Puylaert P , Heck R V , Fan Y T , et al . Selective hydrogenation of α, β-unsaturated aldehydes and ketones by air-stable ruthenium NNs complexes[J]. Chem. Eur. J., 2017, 23: 8473-8481. |
[1] | 张因, 郭健健, 任欢杰, 程娟, 李海涛, 武建兵, 赵永祥. 插层阴离子对以类水滑石为前体Ni-Al2O3催化剂催化乙酰丙酸加氢性能的影响[J]. 化工学报, 2020, 71(8): 3614-3624. |
[2] | 屠佳成, 桑乐, 艾宁, 徐建鸿, 张吉松. 连续微反应加氢技术在有机合成中的研究进展[J]. 化工学报, 2019, 70(10): 3859-3868. |
[3] | 王杰, 张因, 郭健健, 赵丽丽, 赵永祥. Ni/ZrO2-SiO2催化剂催化乙酰丙酸加氢合成γ-戊内酯[J]. 化工学报, 2018, 69(8): 3452-3459. |
[4] | 李晨阳, 冯淼, 崔海峰, 曹贵平, 吕慧, 陈荣起. 蜂窝陶瓷骨架微结构修饰调控制备Pd/CNTs@CHC催化剂用于PS加氢[J]. 化工学报, 2017, 68(7): 2746-2754. |
[5] | 陈伦刚, 刘勇, 定明月, 张兴华, 李宇萍, 张琦, 王铁军, 马隆龙. Ru催化加氢选择性脱除F-T合成水相中的含氧化合物[J]. 化工学报, 2014, 65(11): 4347-4355. |
[6] | 孙梅娟1,黄晓典1,关清卿1,张春云2,柴欣生2,田森林1,宁平1,谷俊杰1. 超临界乙醇体系中苯酚催化加氢的降解规律[J]. 化工进展, 2014, 33(07): 1902-1907. |
[7] | 孙洪志,王 倩,宋名秀,阿不都拉江?那斯尔,王付燕,朱维群. CO2化学利用的研究进展[J]. 化工进展, 2013, 32(07): 1666-1672. |
[8] | 张军华1,国海光1,郇昌永1,姜 莉2,沈 强1. Pt/C催化加氢法制备DSD酸[J]. 化工进展, 2012, 31(09): 2070-2074. |
[9] | 刘少文1,2,涂文艳2,包传平2. La2O3助剂对Ni/γ-Al2O3/堇青石结构化催化剂催化加氢合成间苯二胺性能的影响[J]. 化工进展, 2012, 31(01 ): 122-125. |
[10] | 顾 斌,王 红,卯福林,周小平. Cu/SiO2两步法催化甘油氢解制备1,2-丙二醇 [J]. CIESC Journal, 2011, 30(9): 1961-. |
[11] | 张 跃,宗 恺,严生虎,刘建武,沈介发. 乙醇酸甲酯催化加氢制备乙二醇 [J]. CIESC Journal, 2011, 30(3): 638-. |
[12] | 姜元国,陈日志,邢卫红. 对硝基苯酚催化加氢研究进展 [J]. CIESC Journal, 2011, 30(2): 309-. |
[13] | 廖湘洲1,2,卢 磊1,3,宁春利1,戴成勇1,高 滋2,张春雷1 . 草酸二甲酯加氢制乙醇酸甲酯催化剂的研究进展[J]. CIESC Journal, 2011, 30(11): 2349-. |
[14] | 强明辉,李云庆,王家喜. 磁性纳米负载金属催化剂的制备及其在甲苯催化氢化反应中的性能 [J]. CIESC Journal, 2010, 29(8): 1479-. |
[15] | 张鲁湘,张永春,陈绍云. CO2加氢制甲醇、二甲醚的研究进展 [J]. CIESC Journal, 2010, 29(6): 1041-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||