化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3648-3657.DOI: 10.11949/0438-1157.20210260
陈康伟1,2(),熊文婷1,2(),符继乐1,2,陈秉辉1,2()
收稿日期:
2021-02-19
修回日期:
2021-05-12
出版日期:
2021-07-05
发布日期:
2021-07-05
通讯作者:
陈秉辉
作者简介:
陈康伟(1984—),男,博士,助理教授,TAN Khangwei1,2(),XIONG Wenting1,2(),FU Jile1,2,CHEN Binghui1,2()
Received:
2021-02-19
Revised:
2021-05-12
Online:
2021-07-05
Published:
2021-07-05
Contact:
CHEN Binghui
摘要:
费托合成是以合成气生产清洁燃料和其他化学品的重要途径。传统费托合成产物遵循A-S-F分布,只有甲烷和重质烃的选择性没有极限值。因此,费托合成研究以最大程度地合成重质烃,提高合成产物中重质烃的选择性为目标。基于此,首先详细探究了Al2O3、SiO2和SiC载体对费托反应性能的影响。结果表明 Co/SiC催化剂具有最高的CO转化率(83.5%)和C5+选择性(80.3%)。与浸渍法相比,原位还原法更为有效地引入Ru到Co/SiC催化剂,将C5+选择性提高至90.1%。Ru助剂能在保持较高催化活性不变的前提下,有效提高Co/SiC催化剂C5+选择性。催化剂表征(XRD、H2-TPR、XPS、H2-化学吸附和TEM)结果表明,Ru能与Co发生相互作用,提高了催化剂的可还原性和活性组分的分散性,进而改善了Co/SiC催化剂重质烃的选择性。
中图分类号:
陈康伟, 熊文婷, 符继乐, 陈秉辉. 合成气费托合成制重质烃Ru-Co/SiC催化剂的制备及性能[J]. 化工学报, 2021, 72(7): 3648-3657.
TAN Khangwei, XIONG Wenting, FU Jile, CHEN Binghui. Preparation and catalytic performance of Ru-Co/SiC catalysts for the synthesis of heavy hydrocarbons from syngas by Fischer-Tropsch reaction[J]. CIESC Journal, 2021, 72(7): 3648-3657.
Catalyst | XCO/% | ||||
---|---|---|---|---|---|
Co/SiC | 83.5 | 9.0 | 9.7 | 80.3 | 1.0 |
Co/SiO2 | 71.9 | 9.2 | 11.2 | 78.5 | 1.1 |
Co/Al2O3 | 75.4 | 15.4 | 14.0 | 69.1 | 1.5 |
表1 不同载体的钴基催化剂的性能
Table 1 Effect of supports on the catalytic performance of Co-based catalysts
Catalyst | XCO/% | ||||
---|---|---|---|---|---|
Co/SiC | 83.5 | 9.0 | 9.7 | 80.3 | 1.0 |
Co/SiO2 | 71.9 | 9.2 | 11.2 | 78.5 | 1.1 |
Co/Al2O3 | 75.4 | 15.4 | 14.0 | 69.1 | 1.5 |
Catalyst | XCO/% | ||||
---|---|---|---|---|---|
Co(N)/SiC | 83.5 | 9.0 | 9.7 | 80.3 | 1.0 |
Co(A)/SiC | 55.6 | 18.9 | 20.9 | 57.7 | 2.5 |
表2 不同钴源前体对Co/SiC催化剂性能的影响
Table 2 Effect of cobalt sources on the catalytic performance of the Co/SiC catalysts
Catalyst | XCO/% | ||||
---|---|---|---|---|---|
Co(N)/SiC | 83.5 | 9.0 | 9.7 | 80.3 | 1.0 |
Co(A)/SiC | 55.6 | 18.9 | 20.9 | 57.7 | 2.5 |
Catalyst | XCO/% | ||||
---|---|---|---|---|---|
Co/SiC | 83.5 | 9.0 | 9.8 | 80.3 | 1.0 |
Ru/Co/SiC | 82.3 | 5.2 | 6.5 | 86.6 | 1.7 |
Ru-Co/SiC | 83.1 | 4.6 | 3.7 | 90.1 | 1.5 |
表3 Ru助剂的添加对钴基催化剂的费托合成性能影响
Table 3 The effect of Ru addition on the catalytic performance of Co-based catalysts for F-T synthesis
Catalyst | XCO/% | ||||
---|---|---|---|---|---|
Co/SiC | 83.5 | 9.0 | 9.8 | 80.3 | 1.0 |
Ru/Co/SiC | 82.3 | 5.2 | 6.5 | 86.6 | 1.7 |
Ru-Co/SiC | 83.1 | 4.6 | 3.7 | 90.1 | 1.5 |
Catalyst | Particle size of Co3O4/nm | Particle size of Co/nm |
---|---|---|
Co/SiC | 41.9 | 23.1 |
Ru/Co/SiC | 30.1 | 19.2 |
Ru-Co/SiC | 16.5 | 8.5 |
表4 Co/SiC、Ru/Co/SiC和Ru-Co/SiC催化剂中Co物种的晶粒尺寸
Table 4 The crystallite sizes of Co species in Co/SiC, Ru/Co/SiC and Ru-Co/SiC catalysts
Catalyst | Particle size of Co3O4/nm | Particle size of Co/nm |
---|---|---|
Co/SiC | 41.9 | 23.1 |
Ru/Co/SiC | 30.1 | 19.2 |
Ru-Co/SiC | 16.5 | 8.5 |
Catalyst | BET/(m2/g) | Pore volume/(cm3/g) | Pore diameter/nm |
---|---|---|---|
SiC | 23.9 | 0.15 | 25.0 |
Co/SiC | 21.8 | 0.12 | 22.0 |
Ru/Co/SiC | 24.5 | 0.19 | 30.4 |
Ru-Co/SiC | 55.1 | 0.25 | 17.9 |
表5 Co/SiC、Ru/Co/SiC和Ru-Co/SiC催化剂BET比表面积和孔结构参数
Table 5 The surface area and pore structure data of Co/SiC, Ru/Co/SiC and Ru-Co/SiC catalysts
Catalyst | BET/(m2/g) | Pore volume/(cm3/g) | Pore diameter/nm |
---|---|---|---|
SiC | 23.9 | 0.15 | 25.0 |
Co/SiC | 21.8 | 0.12 | 22.0 |
Ru/Co/SiC | 24.5 | 0.19 | 30.4 |
Ru-Co/SiC | 55.1 | 0.25 | 17.9 |
Catalyst | Element content/% | |
---|---|---|
Co | Ru | |
Co/SiC | 21.7 | — |
Ru/Co/SiC | 20.8 | 0.65 |
Ru-Co/SiC | 20.2 | 0.71 |
表6 Co/SiC、Ru/Co/SiC和Ru-Co/SiC催化剂元素含量
Table 6 The element content of Co/SiC, Ru/Co/SiC and Ru-Co/SiC catalysts
Catalyst | Element content/% | |
---|---|---|
Co | Ru | |
Co/SiC | 21.7 | — |
Ru/Co/SiC | 20.8 | 0.65 |
Ru-Co/SiC | 20.2 | 0.71 |
Catalyst | H2-chemisorption | |
---|---|---|
Metal dispersion /% | Metallic surface area /(m2/g) | |
Co/SiC | 0.35 | 0.47 |
Ru/Co/SiC | 0.38 | 0.51 |
Ru-Co/SiC | 0.42 | 0.57 |
表7 Co/SiC、Ru-Co/SiC和Ru/Co/SiC催化剂中活性组分的分散度和表面积
Table 7 The data of metal dispersion and metallic surface area for Co/SiC, Ru-Co/SiC and Ru/Co/SiC catalysts
Catalyst | H2-chemisorption | |
---|---|---|
Metal dispersion /% | Metallic surface area /(m2/g) | |
Co/SiC | 0.35 | 0.47 |
Ru/Co/SiC | 0.38 | 0.51 |
Ru-Co/SiC | 0.42 | 0.57 |
Catalyst | BE/eV | Intensity ratio | |||||
---|---|---|---|---|---|---|---|
Co 2p3/2 | Ru 3p1/2 | ICo/ISi | IRu/ISi | ||||
Co/SiC | 780.9 | — | 0.4 | — | 1.3 | — | |
Ru/Co/SiC | 780.5 | 463.8 | 0.6 | 0.1 | 1.9 | 1.2 | |
Ru-Co/SiC | 781.1 | 464.1 | 1.8 | 0.1 | 2.1 | 1.3 |
表8 Co/SiC、Ru-Co/SiC和Ru/Co/SiC催化剂的XPS表征结果
Table 8 XPS analysis results of Co/SiC, Ru/Co/SiC and Ru-Co/SiC catalysts
Catalyst | BE/eV | Intensity ratio | |||||
---|---|---|---|---|---|---|---|
Co 2p3/2 | Ru 3p1/2 | ICo/ISi | IRu/ISi | ||||
Co/SiC | 780.9 | — | 0.4 | — | 1.3 | — | |
Ru/Co/SiC | 780.5 | 463.8 | 0.6 | 0.1 | 1.9 | 1.2 | |
Ru-Co/SiC | 781.1 | 464.1 | 1.8 | 0.1 | 2.1 | 1.3 |
1 | Dry M E. The Fischer-Tropsch process: 1950—2000[J]. Catalysis Today, 2002, 71(3/4): 227-241. |
2 | Khodakov A Y, Chu W, Fongarland P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem. Rev., 2007, 107(5): 1692-1744. |
3 | Fu T, Li Z. Review of recent development in Co-based catalysts supported on carbon materials for Fischer-Tropsch synthesis[J]. Chemical Engineering Science, 2015, 135: 3-20. |
4 | Storsæter S, Tøtdal B, Walmsley J C, et al. Characterization of alumina-, silica-, and titania-supported cobalt Fischer-Tropsch catalysts[J]. Journal of Catalysis, 2005, 236: 139-52. |
5 | Zhang Y, Qing M, Wang H, et al. Comprehensive understanding of SiO2-promoted Fe Fischer-Tropsch synthesis catalysts: Fe-SiO2 interaction and beyond[J]. Catalysis Today, 2021, 368: 96-105. |
6 | Liu X D, Wang J T, Hu Z Q, et al. Structure and properties of Fe-based nanocrystalline alloys containing a small amount of transition elements[J]. Materials Science and Engineering: A, 1993, 169: L17-L19. |
7 | Jacobs G, Chaney J A, Patterson P M, et al. Fischer-Tropsch synthesis: study of the promotion of Re on the reduction property of Co/Al2O3 catalysts by in situ EXAFS/XANES of Co K and Re LIII edges and XPS[J]. Applied Catalysis A: General, 2004, 264(2): 203-212. |
8 | Shimura K, Miyazawa T, Hanaoka T, et al. Fischer-Tropsch synthesis over TiO2 supported cobalt catalyst: effect of TiO2 crystal phase and metal ion loading[J]. Applied Catalysis A: General, 2013, 460/461: 8-14. |
9 | Díaz J A, Calvo-Serrano M, de la Osa A R, et al. Β-silicon carbide as a catalyst support in the Fischer-Tropsch synthesis: influence of the modification of the support by a pore agent and acidic treatment[J]. Applied Catalysis A: General, 2014, 475: 82-89. |
10 | Petersen E M, Rao R G, Vance B C, et al. SiO2/SiC supports with tailored thermal conductivity to reveal the effect of surface temperature on Ru-catalyzed CO2 methanation[J]. Applied Catalysis B: Environmental, 2021, 286: 119904. |
11 | Zhu X W, Lu X J, Liu X Y, et al. Heat transfer study with and without Fischer-Tropsch reaction in a fixed bed reactor with TiO2, SiO2, and SiC supported cobalt catalysts[J]. Chemical Engineering Journal, 2014, 247: 75-84. |
12 | Lacroix M, Dreibine L, de Tymowski B, et al. Silicon carbide foam composite containing cobalt as a highly selective and re-usable Fischer-Tropsch synthesis catalyst[J]. Applied Catalysis A: General, 2011, 397(1/2): 62-72. |
13 | Jacobs G, Das T K, Zhang Y Q, et al. Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts[J]. Applied Catalysis A: General, 2002, 233(1/2): 263-281. |
14 | Ma W P, Jacobs G, Keogh R A, et al. Fischer-Tropsch synthesis: effect of Pd, Pt, Re, and Ru noble metal promoters on the activity and selectivity of a 25%Co/Al2O3 catalyst[J]. Applied Catalysis A: General, 2012, 437/438: 1-9. |
15 | Noh Y S, Lee K Y, Moon D J. Studies on the Fischer-Tropsch synthesis over RuCo/SiC-Al2O3 structured catalyst[J]. Catalysis Today, 2020, 348: 157-165. |
16 | Rezaei B, Havakeshian E, Ensafi A A. Decoration of nanoporous stainless steel with nanostructured gold via galvanic replacement reaction and its application for electrochemical determination of dopamine[J]. Sensors and Actuators B: Chemical, 2015, 213: 484-492. |
17 | Song H Q, Zhao Q Z, Zhou X, et al. Selection of highly active and stable Co supported SiC catalyst for Fischer-Tropsch synthesis: effect of the preparation method[J]. Fuel, 2018, 229: 144-150. |
18 | Khodakov A Y. Enhancing cobalt dispersion in supported Fischer-Tropsch catalysts via controlled decomposition of cobalt precursors[J]. Brazilian Journal of Physics, 2009, 39(1a): 171-175. |
19 | Gholami Z, Tišler Z, Rubáš V. Recent advances in Fischer-Tropsch synthesis using cobalt-based catalysts: a review on supports, promoters, and reactors[J]. Catalysis Reviews, 2020, doi.org/10.1080/01614940.2020.1762367. |
20 | Zhang Q H, Cheng K, Kang J C, et al. Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity[J]. ChemSusChem, 2014, 7(5): 1251-1264. |
21 | Koo H M, Lee B S, Park M J, et al. Fischer-Tropsch synthesis on cobalt/Al2O3-modified SiC catalysts: effect of cobalt-alumina interactions[J]. Catalysis Science & Technology, 2014, 4(2): 343-351. |
22 | Sari A. Investigation of the supercritical conditions for Fischer-Tropsch reaction over an industrial Co-Ru/γ-Al2O3 catalyst[J]. Chemical Engineering Journal, 2014, 244: 317-326. |
23 | Song S H, Lee S B, Bae J W, et al. A comparison with that of Ru-Co/SiO2 catalysts[J]. Catalysis Communications, 2008, 9: 2282. |
24 | Park J Y, Lee Y J, Karandikar P R, et al. Ru promoted cobalt catalyst on γ-Al2O3 support: influence of pre-synthesized nanoparticles on Fischer-Tropsch reaction[J]. Journal of Molecular Catalysis A: Chemical, 2011, 344(1/2): 153-160. |
25 | Parnian M J, Khodadadi A A, Taheri Najafabadi A, et al. Preferential chemical vapor deposition of ruthenium on cobalt with highly enhanced activity and selectivity for Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2014, 470: 221-231. |
26 | Jabbour K, El Hassan N, Casale S, et al. Promotional effect of Ru on the activity and stability of Co/SBA-15 catalysts in dry reforming of methane[J]. International Journal of Hydrogen Energy, 2014, 39(15): 7780-7787. |
27 | Kungurova O A, Khassin A A, Cherepanova S V, et al. Δ-Alumina supported cobalt catalysts promoted by ruthenium for Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2017, 539: 48-58. |
28 | Gorimbo J, Muvhiiwa R, Llane E, et al. Cobalt catalyst reduction thermodynamics in Fischer-Tropsch: an attainable region approach[J]. Reactions, 2020, 1(2): 115-129. |
29 | Parnian M J, Taheri Najafabadi A, Mortazavi Y, et al. Ru promoted cobalt catalyst on γ-Al2O3: influence of different catalyst preparation method and Ru loadings on Fischer-Tropsch reaction and kinetics[J]. Applied Surface Science, 2014, 313: 183-195. |
30 | Kungurova O A, Shtertser N V, Chermashentseva G K, et al. Ruthenium promoted cobalt-alumina catalysts for the synthesis of high-molecular-weight solid hydrocarbons from CO and hydrogen[J]. Catalysis in Industry, 2017, 9(1): 23-30. |
31 | Dehghan R, Hansen T W, Wagner J B, et al. In-situ reduction of promoted cobalt oxide supported on alumina by environmental transmission electron microscopy[J]. Catalysis Letters, 2011, 141(6): 754-761. |
[1] | 刘鑫, 潘阳, 刘公平, 方静, 李春利, 李浩. 渗透汽化-隔壁塔精馏耦合初步分离费托合成水的过程研究[J]. 化工学报, 2022, 73(5): 2020-2030. |
[2] | 金科, 王晨光, 马隆龙, 张琦. 核壳纳米材料制备及其在CO/CO2热催化加氢中的应用[J]. 化工学报, 2022, 73(3): 990-1007. |
[3] | 王吴玉, 史玉竹, 严龙, 张兴华, 马隆龙, 张琦. 负载型Co基双功能催化剂上戊酸酯生物燃料的制备[J]. 化工学报, 2022, 73(2): 689-698. |
[4] | 应景涛, 李涛. 费托合成蛋壳型催化剂活性组分厚度的模拟计算[J]. 化工学报, 2019, 70(9): 3404-3411. |
[5] | 宋楠, 潘敏建, 陈炳旭, 钱刚, 段学志, 周兴贵. 费托催化剂η-Fe2C (011)上CH4形成及C-C耦合机理研究[J]. 化工学报, 2019, 70(7): 2540-2547. |
[6] | 刘意, 刘勇, 陈建峰, 张燚. 不同氧化锰载体对费托钴基催化剂合成低碳烯烃的影响[J]. 化工学报, 2015, 66(9): 3413-3420. |
[7] | 王燕1,葛喜慧2,张敏卿1,朱怀工3,张子建2,王明1. 费托合成高温油相产品中正构烃的分离[J]. 化工进展, 2014, 33(11): 2894-2898. |
[8] | 孙启文,吴建民,张宗森,庞利峰. 煤间接液化技术及其研究进展[J]. 化工进展, 2013, 32(01): 1-12. |
[9] | 管国锋,王 磊,王锋娜. 氧化物助剂对费托合成钴基催化剂的促进作用[J]. 化工进展, 2012, 31(12): 2595-2602. |
[10] | 岳晨, 史翊翔, 蔡宁生. 煤气化费托合成/电联产系统建模及热力学分析 [J]. 化工学报, 2011, 62(4): 1070-1076. |
[11] | 侯朝鹏,夏国富,李明丰,聂 红,李大东. FT合成反应器的研究进展 [J]. CIESC Journal, 2011, 30(2): 251-. |
[12] | 王 祥 云. 反应循环气中二氧化碳脱除技术的进展 [J]. CIESC Journal, 2011, 30(1): 52-. |
[13] | 董立华, 郝栩, 曹立仁, 李永旺. 费托合成油品体系相关二元物系汽液平衡预测方法的评价 [J]. 化工学报, 2009, 60(6): 1367-1372. |
[14] | 杨霞珍,刘化章,唐浩东,蔡丽萍,吴再国. Fe、Co基费托合成催化剂助剂研究进展 [J]. CIESC Journal, 2006, 25(8): 867-. |
[15] | 陈建刚, 相宏伟, 李永旺, 孙予罕. 费托法合成液体燃料关键技术研究进展 [J]. 化工学报, 2003, 54(4): 516-523. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||