化工学报 ›› 2022, Vol. 73 ›› Issue (5): 2020-2030.doi: 10.11949/0438-1157.20211774

• 分离工程 • 上一篇    下一篇

渗透汽化-隔壁塔精馏耦合初步分离费托合成水的过程研究

刘鑫1(),潘阳2,刘公平2,方静1,李春利1,李浩1()   

  1. 1.河北工业大学化工学院,天津 300130
    2.南京工业大学化工学院,江苏 南京 211816
  • 收稿日期:2021-12-16 修回日期:2022-02-17 出版日期:2022-05-05 发布日期:2022-05-24
  • 通讯作者: 李浩 E-mail:ctstliuxin@163.com;ctstlihao@hebut.edu.cn
  • 作者简介:刘鑫(1996—),男,硕士研究生,ctstliuxin@163.com
  • 基金资助:
    国家重点研发计划项目(2017YFB0602500);国家自然科学基金项目(21808047)

Study on the process of preliminary separation of Fischer-Tropsch synthetic water by coupling pervaporation and dividing wall column distillation

Xin LIU1(),Yang PAN2,Gongping LIU2,Jing FANG1,Chunli LI1,Hao LI1()   

  1. 1.School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China
    2.School of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
  • Received:2021-12-16 Revised:2022-02-17 Published:2022-05-05 Online:2022-05-24
  • Contact: Hao LI E-mail:ctstliuxin@163.com;ctstlihao@hebut.edu.cn

摘要:

费托合成水中含有醇、酮、酸等多种高附加值含氧有机物可提取出来作为高附加值产品,但由于费托合成水处量大,共沸体系复杂,通常需要首先对其进行初步分离。设计了直接两塔精馏、渗透汽化-两塔精馏、直接隔壁塔精馏、渗透汽化-隔壁塔精馏四种可供选择的初步分离工艺。根据渗透汽化实验数据在Aspen Plus中构建渗透汽化过程模型并进行模拟,结合灵敏度分析得到精馏过程的最佳工艺参数和模拟结果,并对四种工艺的能耗和有效能损失进行对比。结果表明,渗透汽化-隔壁塔精馏工艺具有明显的节能优势,其能耗较直接两塔精馏可降低15.85%,有效能损失降低45.74%。经渗透汽化膜预浓缩后,溶液的浓度可进入隔壁塔的适宜分离浓度区间,以充分发挥隔壁塔优势。由于渗透汽化所需能量可由余热等低品位热源提供,在余热充足的煤化工领域中可显著降低有效能损失。对于该过程而言,当渗透汽化膜价格低于438元/m2时,渗透汽化-隔壁塔精馏耦合工艺将会表现出较高的经济性。

关键词: 费托合成水, 分离, 膜, 渗透汽化, 精馏, 隔壁塔

Abstract:

Fischer-Tropsch synthetic water contains a variety of high value-added oxygen-containing organic compounds such as alcohols, ketones, and acids. However, due to the large amount of water and the complex azeotrope system, it is usually necessary to perform preliminary separation first. In this study, four alternative preliminary separation processes, direct two-column distillation, pervaporation-two-column distillation, direct dividing wall column distillation, and pervaporation-dividing wall column distillation, were designed first. According to the pervaporation experimental data, the pervaporation process model was constructed and simulated in Aspen Plus, and the optimal process parameters and simulation results of the distillation process were obtained through sensitivity analysis. The energy consumption and effective energy loss of the four processes were compared. The results show that the pervaporation-dividing wall column distillation process has obvious energy-saving advantages. Compared with direct two-column distillation, the energy consumption could be reduced by 15.85%, and the effective energy loss could be reduced by 45.74%. After pre-concentration by the pervaporation membrane, the concentration of the solution could enter the appropriate separation concentration range of the dividing wall column, so as to give full play to the advantages of the dividing wall column. Since the energy required for pervaporation could be provided by low-grade heat sources such as waste heat, the loss of effective energy could be significantly reduced in the coal chemical industry with sufficient waste heat. For this process, when the price of pervaporation membrane is lower than 438 CNY/m2, the coupled process of pervaporation-dividing wall column distillation would show higher economy.

Key words: Fischer-Tropsch synthetic water, separation, membranes, pervaporation, distillation, DWC

中图分类号: 

  • TQ 529

表1

渗透汽化实验数据"

物质进料侧含量/ %(质量)渗透侧含量/ %(质量)分离因子
甲醇0.50823.24136.56
乙醇0.81636.78618.85
丙醇0.22469.902018.03
丁醇0.11303.391431.04
丙酮0.10693.260031.49
乙酸0.44260.44261.00

图1

隔壁塔模拟计算的四塔模型示意图"

表2

初步分离目标和要求"

流股主要组分分离要求
A甲醇、丙酮乙醇含量尽可能少
B乙醇、正丙醇、正丁醇甲醇不超过0.20%
C水中几乎不含非酸性含氧有机物

图2

含虚拟膜组件的渗透汽化系统示意图"

表3

各组分渗透系数"

物质渗透系数Qi / (g/(m2·h·kPa))渗透侧总含量/ %(质量)进料侧含量/ %(质量)浓缩倍数
甲醇99.452.070.50824.07
乙醇142.323.650.81634.47
丙醇320.891.000.22464.45
丁醇8240.920.500.11304.42
丙酮152.690.480.10694.49
乙酸461.420.440.44260.99

图3

渗余侧(a)和渗透侧(b)物流参数与膜面积的关系"

表4

渗透汽化模拟计算结果"

膜组件膜面积/m2渗余侧水含量/ %(质量)渗透侧水含量/%(质量)C2+醇回收率/%
膜组件130998.3482.5233.72
膜组件237298.7385.7961.55
膜组件352999.1088.7781.92
膜组件4100599.5091.8699.98

图4

渗透汽化所需能耗与膜面积的关系"

图5

渗透汽化-直接两塔精馏(PV-D)工艺的流程示意图"

表5

渗透汽化-直接两塔精馏(PV-D)工艺的相关参数"

参数C1C2PV
进料量/(kg/h)1119.05000.0
操作压力/kPa101.325101.325101.325
理论板数2640
进料位置1028
回流比1.1013.00
塔顶采出流率/(kg/h)110.029.5
甲醇质量回收率/%99.00
塔釜水含量/%(质量)99.5029.98
塔底采出流率/(kg/h)1009.080.5
渗透汽化能量/kW356
再沸器热负荷/kW155113
冷凝器热负荷/kW-76-113
有效能损失/kW82.379.1942.91

图6

直接精馏过程中主要组分的分布"

图7

渗透汽化-隔壁塔工艺流程示意图"

表6

渗透汽化-隔壁塔工艺的相关参数"

参数数值参数数值
进料量/(kg/h)1119.0塔顶采出流率/(kg/h)29.5
操作压力/kPa101.325侧线采出流率/(kg/h)80.5
总理论板数70塔底采出流率/(kg/h)1009.0
隔板位置29~58塔顶甲醇质量回收率/%99.00
预分馏段理论板数30侧采水含量/%(质量)29.88
侧线采出位置47冷凝器热负荷/kW-133
进料位置36再沸器热负荷/kW212
回流比15.45渗透汽化能量/kW356
汽相分配率0.70DWC有效能损失/kW116.54
液相分配率0.25PV有效能损失/kW42.91

图8

隔壁塔中主要组分分布"

图9

直接两塔精馏工艺流程的示意图"

表7

工艺D的最佳工艺参数"

参数C1C2
进料量/(kg/h)5000.0
操作压力/kPa101.325101.325
理论板数2840
进料位置828
回流比4.1012.80
塔顶采出流率/(kg/h)115.031.0
甲醇质量回收率/%99.00
塔釜水含量/%(质量)99.5032.44
塔底采出流率/(kg/h)4885.084.0
再沸器热负荷/kW556119
冷凝器热负荷/kW-197-118
有效能损失/kW284.199.66

图10

直接隔壁塔精馏工艺流程示意图"

表8

直接隔壁塔精馏工艺的最佳工艺参数"

参数数值参数数值
进料量/(kg/h)5000.0液相分配率0.30
操作压力/kPa101.325塔顶采出流率/(kg/h)31.0
总理论板数70侧线采出流率/(kg/h)84.0
隔板位置29~58塔底采出流率/(kg/h)4885.0
预分馏段理论板数30塔顶甲醇质量回收率/%99.00
侧线采出位置48侧采水含量/%(质量)31.91
进料位置36冷凝器热负荷/kW-385
回流比43.75再沸器热负荷/kW744
汽相分配率0.70有效能损失/kW396.79

表9

四种分离工艺的主要参数对比"

工艺DDWCPV-DPV-DWC
能耗/kW675744624568
节能率/%-10.227.5615.85
有效能损失/kW293.85396.79134.47159.45
混醇产品含水量/%32.4431.9120.9829.88
混醇产品流率(B)/(kg/h)84.084.080.580.5
塔顶乙醇含量/%3.051.602.372.10
塔顶产品流率(A)/(kg/h)31.031.029.529.5
塔釜水含量/%99.5099.5099.5099.50
塔釜产品流率(C)/(kg/h)4885.04885.01009.01009.0
1 Wen X, Zhang Y H, Liu C C, et al. Performance of hierarchical ZSM-5 supported cobalt catalyst in the Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8): 950-955.
2 张琪, 王涛, 张雪冰, 等. 费托合成产物中含氧组分资源化利用技术进展[J]. 化工进展, 2020, 39(8): 3320-3332.
Zhang Q, Wang T, Zhang X B, et al. Advances in resource utilization of oxygenated compounds in Fischer-Tropsch synthesis products[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3320-3332.
3 Majone M, Aulenta F, Dionisi D, et al. High-rate anaerobic treatment of Fischer-Tropsch wastewater in a packed-bed biofilm reactor[J]. Water Research, 2010, 44(9): 2745-2752.
4 公磊, 吴秀章, 卢卫民, 等. 煤基高温费托合成技术进展[J]. 化工进展, 2016, 35(S1): 122-129.
Gong L, Wu X Z, Lu W M, et al. Advances in the coal based high-temperature Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2016, 35(S1): 122-129.
5 吴丽, 任云霞, 董桂燕, 等. Fenton-UASB-生物接触氧化处理Fischer-Tropsch合成废水的研究[J]. 燃料化学学报, 2010, 38(4): 508-512.
Wu L, Ren Y X, Dong G Y, et al. Study on Fischer-Tropsch synthesis waste water treatment by Fenton-UASB-biological contact oxidation[J]. Journal of Fuel Chemistry and Technology, 2010, 38(4): 508-512.
6 孙启文, 王燕, 黄海, 等. 一种费托合成反应水的处理方法: 1696082A[P]. 2005-11-16.
Sun Q W, Wang Y, Huang H,et al. Method for treating water reacted from Fischer-Tropsch synthesis: 1696082A[P]. 2005-11-16.
7 杨正伟, 孙启文, 张宗森. 连续精馏分离高温费托合成反应水中的含氧有机物[J]. 化学工程, 2014, 42(10): 29-33, 40.
Yang Z W, Sun Q W, Zhang Z S. Separation of organic compounds from high-temperature Fischer-Tropsch reaction water by continuous distillation[J]. Chemical Engineering (China), 2014, 42(10): 29-33, 40.
8 张宏勋, 王天贵, 张秋香. 费托反应水中有机物初步分离的模拟研究[J]. 化学工程师, 2007, 21(11): 13-16.
Zhang H X, Wang T G, Zhang Q X. Simulation study on organics separation from Fischer-Tropsch reaction water[J]. Chemical Engineer, 2007, 21(11): 13-16.
9 Djas M, Henczka M. Reactive extraction of carboxylic acids using organic solvents and supercritical fluids: a review[J]. Separation and Purification Technology. 2018, 201: 106-119.
10 Rocha M A A, Raeissi S, Hage P, et al. Recovery of volatile fatty acids from water using medium-chain fatty acids and a cosolvent[J]. Chemical Engineering Science. 2017, 165: 74-80.
11 Saboe P O, Manker L P, Michener W E, et al. In situ recovery of bio-based carboxylic acids[J]. Green Chemistry, 2018, 20(8): 1791-1804.
12 马爱华, 云志. 费托合成水相副产物中具有共沸组成的低碳混合醇-水体系分离方法的研究进展[J]. 石油学报(石油加工), 2013, 29(4): 738-743.
Ma A H, Yun Z. Research progress of separation technologies for azeotropic mixture of lower alcohols-water system of the by-product in water of Fischer-Tropsch synthesis[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2013, 29(4): 738-743.
13 李春利, 张乾龙, 郭中山, 等. 费托合成水中混合醇初步分离工艺的实验与模拟[J]. 煤炭学报, 2020, 45(4): 1319-1326.
Li C L, Zhang Q L, Guo Z S, et al. Experiment and simulation of preliminary separation process of mixed alcohols in Fischer-Tropsch water[J]. Journal of China Coal Society, 2020, 45(4): 1319-1326.
14 Fang J, Li Z Y, Huang G M, et al. Externally heat-integrated multiple diabatic distillation columns (EHImxDC): basic concept and general characteristics[J]. Industrial & Engineering Chemistry Research, 2020, 59(4): 1668-1681.
15 王晓红, 张远鹏, 于新帅, 等. 精馏-膜分离技术集成过程研究进展[J]. 化工进展, 2018, 37(S1): 12-18.
Wang X H, Zhang Y P, Yu X S, et al. Research progress of hybrid distillation-membrane separation process[J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 12-18.
16 Skiborowski M, Wessel J, Marquardt W. Efficient optimization-based design of membrane-assisted distillation processes[J]. Industrial & Engineering Chemistry Research, 2014, 53(40): 15698-15717.
17 Li H, Guo C, Guo H, et al. Methodology for design of vapor permeation membrane-assisted distillation processes for aqueous azeotrope dehydration[J]. Journal of Membrane Science. 2019, 579: 318-328.
18 Wu K, Li H, Li X, et al. Inter‐integration reactive distillation with vapor permeation for ethyl levulinate production: modeling, process analysis and design[J]. Chemical Engineering Science, 2021, 245: 116962.
19 Han W T, Han Z W, Gao X C, et al. Inter‐integration reactive distillation with vapor permeation for ethyl levulinate production: equipment development and experimental validating[J]. AIChE Journal, 2022, 68(2): e17441.
20 胡子益, 李洪波, 谭宇鑫, 等. 分子筛膜-精馏耦合用于费托合成水相副产物混合醇回收的工艺流程模拟[J]. 化工进展, 2016, 35(S2): 56-60.
Hu Z Y, Li H B, Tan Y X, et al. Zeolite membrane dehydration and distillation coupling process simulation of F-T water by-product recovery[J]. Chemical Industry and Engineering Progress, 2016, 35(S2): 56-60.
21 汪俊锋, 王红星, 杨金杯, 等. 费托合成水相副产物混合醇分离脱水工艺模拟及优化[J]. 计算机与应用化学, 2015, 32(5): 567-571.
Wang J F, Wang H X, Yang J B, et al. F-T of mixed alcohol aqueous by-product separation dehydration technology simulation and optimization[J]. Computers and Applied Chemistry, 2015, 32(5): 567-571.
22 汪旭, 蒋晓伟. 精馏-渗透汽化联合工艺在费托合成水回收醇类产品中的应用[J]. 化工设计, 2019, 29(3): 3-7, 25.
Wang X, Jiang X W. Application of distillation-pervaporation combined process in Fischer-Tropsch water for alcohol products recovery[J]. Chemical Engineering Design, 2019, 29(3): 3-7, 25.
23 李玲, 柴士阳, 刘来春, 等. 费托合成水相副产物混合醇渗透蒸发分离工艺[J]. 化工进展, 2017, 36(6): 2086-2093.
Li L, Chai S Y, Liu L C, et al. Study on separation of mixed alcohol from water phase by-product in the F-T synthesis by pervaporation technology[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2086-2093.
24 Li Y K, Shen J, Guan K C, et al. PEBA/ceramic hollow fiber composite membrane for high-efficiency recovery of bio-butanol via pervaporation[J]. Journal of Membrane Science, 2016, 510: 338-347.
25 Cheng C, Liu F F, Yang H K, et al. High-performance n-butanol recovery from aqueous solution by pervaporation with a PDMS mixed matrix membrane filled with zeolite[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7777-7786.
26 Lv B D, Liu G P, Dong X L, et al. Novel reactive distillation-pervaporation coupled process for ethyl acetate production with water removal from reboiler and acetic acid recycle[J]. Industrial & Engineering Chemistry Research, 2012, 51(23): 8079-8086.
27 Lovasz A, Mizsey P, Fonyo Z. Methodology for parameter estimation of modelling of pervaporation in flowsheeting environment[J]. Chemical Engineering Journal, 2007, 133(1/2/3): 219-227.
28 Koch K, Sudhoff D, Kreiß S, et al. Optimisation-based design method for membrane-assisted separation processes[J]. Chemical Engineering and Processing: Process Intensification, 2013, 67: 2-15.
29 赵月红, 温浩, 许志宏. Aspen Plus用户模型开发方法探讨[J]. 计算机与应用化学, 2003, 20(4): 435-438.
Zhao Y H, Wen H, Xu Z H. Discussions on development of user models for Aspen Plus[J]. Computers and Applied Chemistry, 2003, 20(4): 435-438.
30 Rom A, Miltner A, Wukovits W, et al. Energy saving potential of hybrid membrane and distillation process in butanol purification: experiments, modelling and simulation[J]. Chemical Engineering and Processing: Process Intensification, 2016, 104: 201-211.
31 Liang J, Wang H H, Wang Z, et al. Optimal separation of acetonitrile and pyridine from industrial wastewater[J]. Chemical Engineering Research and Design, 2021, 169: 54-65.
32 Wang S, Dai Y, Ma Z Y, et al. Application of energy-saving hybrid distillation-pervaporation process for recycling organics from wastewater based on thermoeconomic and environmental analysis[J]. Journal of Cleaner Production, 2021, 294: 126297.
33 Zhang H R, Wang S, Tang J X, et al. Multi-objective optimization and control strategy for extractive distillation with dividing-wall column/pervaporation for separation of ternary azeotropes based on mechanism analysis[J]. Energy, 2021, 229: 120774.
34 方静, 相宁, 李晓春, 等. Kaibel隔壁塔用于四组分精馏的模拟优化和实验研究[J]. 化工进展, 2018, 37(5): 1646-1654.
Fang J, Xiang N, Li X C, et al. Optimization and experimental study of Kaibel dividing-wall column for separating a quaternary system[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1646-1654.
35 Cai D, Hu S, Miao Q, et al. Two-stage pervaporation process for effective in situ removal acetone-butanol-ethanol from fermentation broth[J]. Bioresource Technology, 2017, 224: 380-388.
36 Navarro-Amorós M A, Ruiz-Femenia R, Caballero J A. A new technique for recovering energy in thermally coupled distillation using vapor recompression cycles[J]. AIChE Journal, 2013, 59(10): 3767-3781.
[1] 王立维, 王娟娟, 王永洪, 张新儒, 李晋平. 聚乙烯胺/Cu3(BTC)2-MMT-NH2混合基质膜的制备及气体传递性能[J]. 化工学报, 2022, 73(7): 3068-3077.
[2] 宋健斐, 孙立强, 解明, 魏耀东. 旋风分离器内气相旋转流不稳定性的实验研究[J]. 化工学报, 2022, 73(7): 2858-2864.
[3] 罗佳, 吴双应, 肖兰, 周世耀, 陈志莉. 撞击速度对连续液滴撞击热圆柱壁面局部传热特性影响的实验[J]. 化工学报, 2022, 73(7): 2944-2951.
[4] 孙国鑫, 苟萌萱, 周诚, 常佩, 贺高红, 姜晓滨. 高浓度Na+//NO3-, SO42--H2O溶液的膜蒸馏结晶耦合过程调控[J]. 化工学报, 2022, 73(7): 3078-3089.
[5] 刘洪超, 陈苏航, 段先力, 吴凡, 徐小飞, 宋先雨, 赵双良, 刘洪来. Janus石墨烯量子点在生物膜中的输运行为:分子动力学模拟[J]. 化工学报, 2022, 73(7): 2835-2843.
[6] 于喆淼, 王志, 生梦龙, 邢广宇, 王纪孝. 界面聚合法制备用于脱氮提纯CH4的N2优先渗透ZIF-90/聚酰胺混合基质膜[J]. 化工学报, 2022, 73(7): 3273-3286.
[7] 刘会影, 贾胜坤, 罗祎青, 袁希钢. 气相进料对隔板精馏塔优化设计的影响[J]. 化工学报, 2022, 73(7): 3090-3098.
[8] 朱嫣然, 葛亮, 李兴亚, 徐铜文. 三相结构离子交换膜的构筑及应用研究[J]. 化工学报, 2022, 73(6): 2397-2414.
[9] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[10] 李智超, 郑瑜, 张润楠, 姜忠义. 高通量抗污染氧化石墨烯膜研究进展[J]. 化工学报, 2022, 73(6): 2370-2380.
[11] 段文婷, 任思月, 冯霄, 王彧斐. 与换热网络热集成的精馏塔压优化[J]. 化工学报, 2022, 73(5): 2052-2059.
[12] 徐洁, 俞树荣, 丁雪兴, 蒋海涛, 丁俊华. 基于波箔片变形的浮动式箔片气膜密封性能分析[J]. 化工学报, 2022, 73(5): 2083-2093.
[13] 王江丽, 薛敏, 赵承科, 岳凤霞. 木质素分级对其应用性能的影响[J]. 化工学报, 2022, 73(5): 1894-1907.
[14] 叶枫, 李刚, 付鑫, 郎雪梅, 王燕鸿, 王盛龙, 张建利, 樊栓狮. 多孔膜反应器中丙烷催化脱氢制丙烯的模拟研究[J]. 化工学报, 2022, 73(5): 2008-2019.
[15] 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!