化工学报 ›› 2022, Vol. 73 ›› Issue (5): 2020-2030.doi: 10.11949/0438-1157.20211774
Xin LIU1(),Yang PAN2,Gongping LIU2,Jing FANG1,Chunli LI1,Hao LI1(
)
摘要:
费托合成水中含有醇、酮、酸等多种高附加值含氧有机物可提取出来作为高附加值产品,但由于费托合成水处量大,共沸体系复杂,通常需要首先对其进行初步分离。设计了直接两塔精馏、渗透汽化-两塔精馏、直接隔壁塔精馏、渗透汽化-隔壁塔精馏四种可供选择的初步分离工艺。根据渗透汽化实验数据在Aspen Plus中构建渗透汽化过程模型并进行模拟,结合灵敏度分析得到精馏过程的最佳工艺参数和模拟结果,并对四种工艺的能耗和有效能损失进行对比。结果表明,渗透汽化-隔壁塔精馏工艺具有明显的节能优势,其能耗较直接两塔精馏可降低15.85%,有效能损失降低45.74%。经渗透汽化膜预浓缩后,溶液的浓度可进入隔壁塔的适宜分离浓度区间,以充分发挥隔壁塔优势。由于渗透汽化所需能量可由余热等低品位热源提供,在余热充足的煤化工领域中可显著降低有效能损失。对于该过程而言,当渗透汽化膜价格低于438元/m2时,渗透汽化-隔壁塔精馏耦合工艺将会表现出较高的经济性。
中图分类号:
1 | Wen X, Zhang Y H, Liu C C, et al. Performance of hierarchical ZSM-5 supported cobalt catalyst in the Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8): 950-955. |
2 | 张琪, 王涛, 张雪冰, 等. 费托合成产物中含氧组分资源化利用技术进展[J]. 化工进展, 2020, 39(8): 3320-3332. |
Zhang Q, Wang T, Zhang X B, et al. Advances in resource utilization of oxygenated compounds in Fischer-Tropsch synthesis products[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3320-3332. | |
3 | Majone M, Aulenta F, Dionisi D, et al. High-rate anaerobic treatment of Fischer-Tropsch wastewater in a packed-bed biofilm reactor[J]. Water Research, 2010, 44(9): 2745-2752. |
4 | 公磊, 吴秀章, 卢卫民, 等. 煤基高温费托合成技术进展[J]. 化工进展, 2016, 35(S1): 122-129. |
Gong L, Wu X Z, Lu W M, et al. Advances in the coal based high-temperature Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2016, 35(S1): 122-129. | |
5 | 吴丽, 任云霞, 董桂燕, 等. Fenton-UASB-生物接触氧化处理Fischer-Tropsch合成废水的研究[J]. 燃料化学学报, 2010, 38(4): 508-512. |
Wu L, Ren Y X, Dong G Y, et al. Study on Fischer-Tropsch synthesis waste water treatment by Fenton-UASB-biological contact oxidation[J]. Journal of Fuel Chemistry and Technology, 2010, 38(4): 508-512. | |
6 | 孙启文, 王燕, 黄海, 等. 一种费托合成反应水的处理方法: 1696082A[P]. 2005-11-16. |
Sun Q W, Wang Y, Huang H,et al. Method for treating water reacted from Fischer-Tropsch synthesis: 1696082A[P]. 2005-11-16. | |
7 | 杨正伟, 孙启文, 张宗森. 连续精馏分离高温费托合成反应水中的含氧有机物[J]. 化学工程, 2014, 42(10): 29-33, 40. |
Yang Z W, Sun Q W, Zhang Z S. Separation of organic compounds from high-temperature Fischer-Tropsch reaction water by continuous distillation[J]. Chemical Engineering (China), 2014, 42(10): 29-33, 40. | |
8 | 张宏勋, 王天贵, 张秋香. 费托反应水中有机物初步分离的模拟研究[J]. 化学工程师, 2007, 21(11): 13-16. |
Zhang H X, Wang T G, Zhang Q X. Simulation study on organics separation from Fischer-Tropsch reaction water[J]. Chemical Engineer, 2007, 21(11): 13-16. | |
9 | Djas M, Henczka M. Reactive extraction of carboxylic acids using organic solvents and supercritical fluids: a review[J]. Separation and Purification Technology. 2018, 201: 106-119. |
10 | Rocha M A A, Raeissi S, Hage P, et al. Recovery of volatile fatty acids from water using medium-chain fatty acids and a cosolvent[J]. Chemical Engineering Science. 2017, 165: 74-80. |
11 | Saboe P O, Manker L P, Michener W E, et al. In situ recovery of bio-based carboxylic acids[J]. Green Chemistry, 2018, 20(8): 1791-1804. |
12 | 马爱华, 云志. 费托合成水相副产物中具有共沸组成的低碳混合醇-水体系分离方法的研究进展[J]. 石油学报(石油加工), 2013, 29(4): 738-743. |
Ma A H, Yun Z. Research progress of separation technologies for azeotropic mixture of lower alcohols-water system of the by-product in water of Fischer-Tropsch synthesis[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2013, 29(4): 738-743. | |
13 | 李春利, 张乾龙, 郭中山, 等. 费托合成水中混合醇初步分离工艺的实验与模拟[J]. 煤炭学报, 2020, 45(4): 1319-1326. |
Li C L, Zhang Q L, Guo Z S, et al. Experiment and simulation of preliminary separation process of mixed alcohols in Fischer-Tropsch water[J]. Journal of China Coal Society, 2020, 45(4): 1319-1326. | |
14 | Fang J, Li Z Y, Huang G M, et al. Externally heat-integrated multiple diabatic distillation columns (EHImxDC): basic concept and general characteristics[J]. Industrial & Engineering Chemistry Research, 2020, 59(4): 1668-1681. |
15 | 王晓红, 张远鹏, 于新帅, 等. 精馏-膜分离技术集成过程研究进展[J]. 化工进展, 2018, 37(S1): 12-18. |
Wang X H, Zhang Y P, Yu X S, et al. Research progress of hybrid distillation-membrane separation process[J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 12-18. | |
16 | Skiborowski M, Wessel J, Marquardt W. Efficient optimization-based design of membrane-assisted distillation processes[J]. Industrial & Engineering Chemistry Research, 2014, 53(40): 15698-15717. |
17 | Li H, Guo C, Guo H, et al. Methodology for design of vapor permeation membrane-assisted distillation processes for aqueous azeotrope dehydration[J]. Journal of Membrane Science. 2019, 579: 318-328. |
18 | Wu K, Li H, Li X, et al. Inter‐integration reactive distillation with vapor permeation for ethyl levulinate production: modeling, process analysis and design[J]. Chemical Engineering Science, 2021, 245: 116962. |
19 | Han W T, Han Z W, Gao X C, et al. Inter‐integration reactive distillation with vapor permeation for ethyl levulinate production: equipment development and experimental validating[J]. AIChE Journal, 2022, 68(2): e17441. |
20 | 胡子益, 李洪波, 谭宇鑫, 等. 分子筛膜-精馏耦合用于费托合成水相副产物混合醇回收的工艺流程模拟[J]. 化工进展, 2016, 35(S2): 56-60. |
Hu Z Y, Li H B, Tan Y X, et al. Zeolite membrane dehydration and distillation coupling process simulation of F-T water by-product recovery[J]. Chemical Industry and Engineering Progress, 2016, 35(S2): 56-60. | |
21 | 汪俊锋, 王红星, 杨金杯, 等. 费托合成水相副产物混合醇分离脱水工艺模拟及优化[J]. 计算机与应用化学, 2015, 32(5): 567-571. |
Wang J F, Wang H X, Yang J B, et al. F-T of mixed alcohol aqueous by-product separation dehydration technology simulation and optimization[J]. Computers and Applied Chemistry, 2015, 32(5): 567-571. | |
22 | 汪旭, 蒋晓伟. 精馏-渗透汽化联合工艺在费托合成水回收醇类产品中的应用[J]. 化工设计, 2019, 29(3): 3-7, 25. |
Wang X, Jiang X W. Application of distillation-pervaporation combined process in Fischer-Tropsch water for alcohol products recovery[J]. Chemical Engineering Design, 2019, 29(3): 3-7, 25. | |
23 | 李玲, 柴士阳, 刘来春, 等. 费托合成水相副产物混合醇渗透蒸发分离工艺[J]. 化工进展, 2017, 36(6): 2086-2093. |
Li L, Chai S Y, Liu L C, et al. Study on separation of mixed alcohol from water phase by-product in the F-T synthesis by pervaporation technology[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2086-2093. | |
24 | Li Y K, Shen J, Guan K C, et al. PEBA/ceramic hollow fiber composite membrane for high-efficiency recovery of bio-butanol via pervaporation[J]. Journal of Membrane Science, 2016, 510: 338-347. |
25 | Cheng C, Liu F F, Yang H K, et al. High-performance n-butanol recovery from aqueous solution by pervaporation with a PDMS mixed matrix membrane filled with zeolite[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7777-7786. |
26 | Lv B D, Liu G P, Dong X L, et al. Novel reactive distillation-pervaporation coupled process for ethyl acetate production with water removal from reboiler and acetic acid recycle[J]. Industrial & Engineering Chemistry Research, 2012, 51(23): 8079-8086. |
27 | Lovasz A, Mizsey P, Fonyo Z. Methodology for parameter estimation of modelling of pervaporation in flowsheeting environment[J]. Chemical Engineering Journal, 2007, 133(1/2/3): 219-227. |
28 | Koch K, Sudhoff D, Kreiß S, et al. Optimisation-based design method for membrane-assisted separation processes[J]. Chemical Engineering and Processing: Process Intensification, 2013, 67: 2-15. |
29 | 赵月红, 温浩, 许志宏. Aspen Plus用户模型开发方法探讨[J]. 计算机与应用化学, 2003, 20(4): 435-438. |
Zhao Y H, Wen H, Xu Z H. Discussions on development of user models for Aspen Plus[J]. Computers and Applied Chemistry, 2003, 20(4): 435-438. | |
30 | Rom A, Miltner A, Wukovits W, et al. Energy saving potential of hybrid membrane and distillation process in butanol purification: experiments, modelling and simulation[J]. Chemical Engineering and Processing: Process Intensification, 2016, 104: 201-211. |
31 | Liang J, Wang H H, Wang Z, et al. Optimal separation of acetonitrile and pyridine from industrial wastewater[J]. Chemical Engineering Research and Design, 2021, 169: 54-65. |
32 | Wang S, Dai Y, Ma Z Y, et al. Application of energy-saving hybrid distillation-pervaporation process for recycling organics from wastewater based on thermoeconomic and environmental analysis[J]. Journal of Cleaner Production, 2021, 294: 126297. |
33 | Zhang H R, Wang S, Tang J X, et al. Multi-objective optimization and control strategy for extractive distillation with dividing-wall column/pervaporation for separation of ternary azeotropes based on mechanism analysis[J]. Energy, 2021, 229: 120774. |
34 | 方静, 相宁, 李晓春, 等. Kaibel隔壁塔用于四组分精馏的模拟优化和实验研究[J]. 化工进展, 2018, 37(5): 1646-1654. |
Fang J, Xiang N, Li X C, et al. Optimization and experimental study of Kaibel dividing-wall column for separating a quaternary system[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1646-1654. | |
35 | Cai D, Hu S, Miao Q, et al. Two-stage pervaporation process for effective in situ removal acetone-butanol-ethanol from fermentation broth[J]. Bioresource Technology, 2017, 224: 380-388. |
36 | Navarro-Amorós M A, Ruiz-Femenia R, Caballero J A. A new technique for recovering energy in thermally coupled distillation using vapor recompression cycles[J]. AIChE Journal, 2013, 59(10): 3767-3781. |
[1] | 王立维, 王娟娟, 王永洪, 张新儒, 李晋平. 聚乙烯胺/Cu3(BTC)2-MMT-NH2混合基质膜的制备及气体传递性能[J]. 化工学报, 2022, 73(7): 3068-3077. |
[2] | 宋健斐, 孙立强, 解明, 魏耀东. 旋风分离器内气相旋转流不稳定性的实验研究[J]. 化工学报, 2022, 73(7): 2858-2864. |
[3] | 罗佳, 吴双应, 肖兰, 周世耀, 陈志莉. 撞击速度对连续液滴撞击热圆柱壁面局部传热特性影响的实验[J]. 化工学报, 2022, 73(7): 2944-2951. |
[4] | 孙国鑫, 苟萌萱, 周诚, 常佩, 贺高红, 姜晓滨. 高浓度Na+//NO |
[5] | 刘洪超, 陈苏航, 段先力, 吴凡, 徐小飞, 宋先雨, 赵双良, 刘洪来. Janus石墨烯量子点在生物膜中的输运行为:分子动力学模拟[J]. 化工学报, 2022, 73(7): 2835-2843. |
[6] | 于喆淼, 王志, 生梦龙, 邢广宇, 王纪孝. 界面聚合法制备用于脱氮提纯CH4的N2优先渗透ZIF-90/聚酰胺混合基质膜[J]. 化工学报, 2022, 73(7): 3273-3286. |
[7] | 刘会影, 贾胜坤, 罗祎青, 袁希钢. 气相进料对隔板精馏塔优化设计的影响[J]. 化工学报, 2022, 73(7): 3090-3098. |
[8] | 朱嫣然, 葛亮, 李兴亚, 徐铜文. 三相结构离子交换膜的构筑及应用研究[J]. 化工学报, 2022, 73(6): 2397-2414. |
[9] | 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305. |
[10] | 李智超, 郑瑜, 张润楠, 姜忠义. 高通量抗污染氧化石墨烯膜研究进展[J]. 化工学报, 2022, 73(6): 2370-2380. |
[11] | 段文婷, 任思月, 冯霄, 王彧斐. 与换热网络热集成的精馏塔压优化[J]. 化工学报, 2022, 73(5): 2052-2059. |
[12] | 徐洁, 俞树荣, 丁雪兴, 蒋海涛, 丁俊华. 基于波箔片变形的浮动式箔片气膜密封性能分析[J]. 化工学报, 2022, 73(5): 2083-2093. |
[13] | 王江丽, 薛敏, 赵承科, 岳凤霞. 木质素分级对其应用性能的影响[J]. 化工学报, 2022, 73(5): 1894-1907. |
[14] | 叶枫, 李刚, 付鑫, 郎雪梅, 王燕鸿, 王盛龙, 张建利, 樊栓狮. 多孔膜反应器中丙烷催化脱氢制丙烯的模拟研究[J]. 化工学报, 2022, 73(5): 2008-2019. |
[15] | 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182. |
|