1 |
Xiao C, Leng X Y, Zhang X, et al. Improved thermal properties by controlling selective distribution of AlN and MWCNT in immiscible polycarbonate (PC)/Polyamide 66 (PA66) composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 110: 133-141.
|
2 |
Zeng X L, Yao Y M, Gong Z Y, et al. Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement[J]. Small (Weinheim an Der Bergstrasse, Germany), 2015, 11(46): 6205-6213.
|
3 |
Gu J W, Guo Y Q, Lv Z Y, et al. Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 95-101.
|
11 |
涂友雷. PVDF/BN导热绝缘复合材料制备与性能研究[D]. 合肥: 安徽大学, 2019.
|
|
Tu Y L. Preparation and properties of PVDF / BN thermal conductive and insulating composites[D]. Hefei: Anhui University, 2019.
|
4 |
Ahn K, Kim K, Kim M, et al. Fabrication of silicon carbonitride-covered boron nitride/Nylon 6, 6 composite for enhanced thermal conductivity by melt process[J]. Ceramics International, 2015, 41(2): 2187-2195.
|
5 |
Wu X N, Ji H F, Wang Z, et al. Preparation and properties of thermally conductive epoxy resin/boron nitride composites[J]. Digest Journal of Nanomaterials and Biostructures, 2018, 13(4): 977-990.
|
6 |
Guo H, Wang Q, Liu J, et al. Improved interfacial properties for largely enhanced thermal conductivity of poly(vinylidene fluoride)-based nanocomposites via functionalized multi-wall carbon nanotubes[J]. Applied Surface Science, 2019, 487: 379-388.
|
12 |
Shtein M, Nadiv R, Buzaglo M, et al. Thermally conductive graphene-polymer composites: size, percolation, and synergy effects[J]. Chemistry of Materials, 2015, 27(6): 2100-2106.
|
13 |
Chen Y M, He X M, Wu Y, et al. Effects of surface-functionalized aluminum nitride on thermal, electrical, and mechanical behaviors of polyarylene ether nitrile-based composites[J]. Polymer Composites, 2016, 37(10): 3033-3041.
|
14 |
Tong Z, Liu M, Bao H. A numerical investigation on the heat conduction in high filler loading particulate composites[J]. International Journal of Heat and Mass Transfer, 2016, 100: 355-361.
|
7 |
Xu Y S, Chung D D L. Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments[J]. Composite Interfaces, 2000, 7(4): 243-256.
|
8 |
Hahn B D, Kim Y, Ahn C W, et al. Fabrication and characterization of aluminum nitride thick film coated on aluminum substrate for heat dissipation[J]. Ceramics International, 2016, 42(16): 18141-18147.
|
9 |
Cao M, Du C Y, Guo H, et al. Continuous network of CNTs in poly(vinylidene fluoride) composites with high thermal and mechanical performance for heat exchangers[J]. Composites Science and Technology, 2019, 173: 33-40.
|
15 |
虞锦洪. 高导热聚合物基复合材料的制备与性能研究[D]. 上海: 上海交通大学, 2012.
|
|
Yu J H. Preparation and properties of high thermal conductivity polymer matrix composites[D]. Shanghai: Shanghai Jiao Tong University, 2012.
|
16 |
Gojny F H, Wichmann M H G, Fiedler B, et al. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites[J]. Polymer, 2006, 47(6): 2036-2045.
|
17 |
Hong J, Lee J, Hong C K, et al. Effect of dispersion state of carbon nanotube on the thermal conductivity of poly(dimethyl siloxane) composites[J]. Current Applied Physics, 2010, 10(1): 359-363.
|
10 |
Hu B Y, Guo H, Wang Q, et al. Enhanced thermal conductivity by constructing 3D-networks in poly(vinylidene fluoride) composites via positively charged hexagonal boron nitride and silica coated carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing, 2020, 137: 106038.
|
18 |
Kim W, Bae J W, Choi I D, et al. Thermally conductive EMC (epoxy molding compound) for microelectronic encapsulation[J]. Polymer Engineering & Science, 1999, 39(4): 756-766.
|
19 |
Hsieh C Y, Chung S L. High thermal conductivity epoxy molding compound filled with a combustion synthesized AlN powder[J]. Journal of Applied Polymer Science, 2006, 102(5): 4734-4740.
|
20 |
Xu Y S, Chung D D L, Mroz C. Thermally conducting aluminum nitride polymer-matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(12): 1749-1757.
|
21 |
Dang T M L, Kim C Y, Zhang Y M, et al. Enhanced thermal conductivity of polymer composites via hybrid fillers of anisotropic aluminum nitride whiskers and isotropic spheres[J]. Composites Part B: Engineering, 2017, 114: 237-246.
|
22 |
Yu J H, Duan J K, Peng W Y, et al. Influence of nano-AlN particles on thermal conductivity, thermal stability and cure behavior of cycloaliphatic epoxy/trimethacrylate system[J]. Express Polymer Letters, 2011, 5(2): 132-141.
|
23 |
Chiavarino B, Crestoni M E, Dopfer O, et al. Benzylium versus tropylium ion dichotomy: vibrational spectroscopy of gaseous C8H9 + ions[J]. Angewandte Chemie, 2012, 51(20): 4947-4949.
|
24 |
Lee J I, Yang S B, Jung H T. Carbon nanotubes-polypropylene nanocomposites for electrostatic discharge applications[J]. Macromolecules, 2009, 42(21): 8328-8334.
|
25 |
Song S S, Cao M, Shan H T, et al. Polyhedral oligomeric silsesquioxane functionalized carbon nanotubes for high thermal conductive poly(vinylidene fluoride) composite membrane[J]. Materials & Design, 2018, 156: 242-251.
|
26 |
Swartz E, Pohl R. Thermal boundary resistance[J]. Reviews of Moden Physics, 1989, 61(3): 605-668.
|
27 |
Cahill D G, Braun P V, Chen G, et al. Nanoscale thermal transport. Ⅱ. 2003—2012[J]. Applied Physics Reviews, 2014, 1(1): 011305.
|
28 |
Zeng S, Su Q, Zhang L Z. Molecular-level evaluation and manipulation of thermal conductivity, moisture diffusivity and hydrophobicity of a GO-PVP/PVDF composite membrane[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119508.
|
29 |
Zhang L Z, Wang X J, Quan Y Y, et al. Conjugate heat conduction in filled composite materials considering interactions between the filler and base materials[J]. International Journal of Heat & Mass Transfer, 2013, 64: 735-742.
|
30 |
Chen Y, Ping C. Heat transfer and pressure drop in fractal tree-like microchannel nets[J]. International Journal of Heat & Mass Transfer, 2002, 45(13): 2643-2648.
|
31 |
Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume[J]. International Journal of Heat & Mass Transfer, 1997, 40(4): 799-811.
|