化工学报 ›› 2023, Vol. 74 ›› Issue (2): 861-870.DOI: 10.11949/0438-1157.20221270
王绍壮1(), 于敦喜1(
), 李佳忆2, 韩京昆1, 喻鑫1, 刘芳琪1
收稿日期:
2022-09-22
修回日期:
2022-11-23
出版日期:
2023-02-05
发布日期:
2023-03-21
通讯作者:
于敦喜
作者简介:
王绍壮(1999—),男,硕士研究生,775587304@qq.com
基金资助:
Shaozhuang WANG1(), Dunxi YU1(
), Jiayi LI2, Jingkun HAN1, Xin YU1, Fangqi LIU1
Received:
2022-09-22
Revised:
2022-11-23
Online:
2023-02-05
Published:
2023-03-21
Contact:
Dunxi YU
摘要:
可磨性是生物质在现有燃煤机组规模化燃烧利用中必须考虑的问题之一。本文基于固定床反应器对玉米秆进行烘焙预处理,针对生物质单烧和与煤混烧两种技术路线,利用臼式研磨仪、全自动粒径筛分仪、纤维素分析仪和傅里叶红外光谱,研究了不同烘焙气氛、温度对燃料可磨性的影响。结果表明,相比于氮气,烟气能够在更低的烘焙温度下使玉米秆可磨性提升至接近于典型动力用煤,主要是由于烟气中的氧化性组分促进了纤维素、半纤维素的分解。当共磨时,煤颗粒表现出助磨的作用提升了玉米秆的可磨性,在较高温度或烟气烘焙条件下,混样的可磨性近似甚至优于煤。
中图分类号:
王绍壮, 于敦喜, 李佳忆, 韩京昆, 喻鑫, 刘芳琪. 烟气烘焙对玉米秆可磨性的影响规律研究[J]. 化工学报, 2023, 74(2): 861-870.
Shaozhuang WANG, Dunxi YU, Jiayi LI, Jingkun HAN, Xin YU, Fangqi LIU. Effects of torrefaction with flue gas on grindability of corn stalk[J]. CIESC Journal, 2023, 74(2): 861-870.
样品 | 工业分析/%(质量,ad) | 元素分析/%(质量,ad) | HHV/ (MJ·kg-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
M | V | A | FC | C | H | N | S | O① | ||
SY煤 | 9.17 | 28.60 | 11.73 | 50.49 | 62.73 | 4.02 | 1.33 | 0.23 | 10.79 | 23.58 |
CS | 12.06 | 62.71 | 7.52 | 17.71 | 42.33 | 5.35 | 2.02 | 0.20 | 30.53 | 14.37 |
N2-240 | 3.00 | 60.02 | 17.85 | 19.13 | 43.92 | 5.04 | 1.99 | 0.10 | 28.11 | 15.94 |
N2-270 | 2.92 | 55.61 | 19.77 | 21.71 | 45.84 | 4.68 | 2.01 | 0.09 | 24.70 | 16.97 |
N2-300 | 2.87 | 37.32 | 24.18 | 35.16 | 54.57 | 4.08 | 2.32 | 0.10 | 11.87 | 19.86 |
DFG-240 | 2.94 | 53.51 | 18.13 | 25.42 | 48.15 | 4.69 | 2.01 | 0.09 | 23.99 | 18.86 |
DFG-270 | 2.87 | 35.83 | 22.32 | 38.77 | 53.35 | 3.82 | 2.35 | 0.11 | 15.18 | 19.20 |
DFG-300 | 2.80 | 30.02 | 25.24 | 41.94 | 55.23 | 3.45 | 2.51 | 0.12 | 10.65 | 19.70 |
WFG-240 | 2.71 | 52.12 | 19.72 | 22.31 | 48.55 | 4.48 | 1.48 | 0.05 | 23.02 | 18.91 |
WFG-270 | 2.19 | 34.31 | 24.53 | 38.96 | 54.42 | 3.84 | 1.81 | 0.07 | 13.14 | 20.52 |
WFG-300 | 2.10 | 27.39 | 28.02 | 42.49 | 56.25 | 3.62 | 1.87 | 0.09 | 8.06 | 20.86 |
表1 样品的工业分析、元素分析和发热量
Table 1 Proximate analysis, ultimate analysis and calorific value of samples
样品 | 工业分析/%(质量,ad) | 元素分析/%(质量,ad) | HHV/ (MJ·kg-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
M | V | A | FC | C | H | N | S | O① | ||
SY煤 | 9.17 | 28.60 | 11.73 | 50.49 | 62.73 | 4.02 | 1.33 | 0.23 | 10.79 | 23.58 |
CS | 12.06 | 62.71 | 7.52 | 17.71 | 42.33 | 5.35 | 2.02 | 0.20 | 30.53 | 14.37 |
N2-240 | 3.00 | 60.02 | 17.85 | 19.13 | 43.92 | 5.04 | 1.99 | 0.10 | 28.11 | 15.94 |
N2-270 | 2.92 | 55.61 | 19.77 | 21.71 | 45.84 | 4.68 | 2.01 | 0.09 | 24.70 | 16.97 |
N2-300 | 2.87 | 37.32 | 24.18 | 35.16 | 54.57 | 4.08 | 2.32 | 0.10 | 11.87 | 19.86 |
DFG-240 | 2.94 | 53.51 | 18.13 | 25.42 | 48.15 | 4.69 | 2.01 | 0.09 | 23.99 | 18.86 |
DFG-270 | 2.87 | 35.83 | 22.32 | 38.77 | 53.35 | 3.82 | 2.35 | 0.11 | 15.18 | 19.20 |
DFG-300 | 2.80 | 30.02 | 25.24 | 41.94 | 55.23 | 3.45 | 2.51 | 0.12 | 10.65 | 19.70 |
WFG-240 | 2.71 | 52.12 | 19.72 | 22.31 | 48.55 | 4.48 | 1.48 | 0.05 | 23.02 | 18.91 |
WFG-270 | 2.19 | 34.31 | 24.53 | 38.96 | 54.42 | 3.84 | 1.81 | 0.07 | 13.14 | 20.52 |
WFG-300 | 2.10 | 27.39 | 28.02 | 42.49 | 56.25 | 3.62 | 1.87 | 0.09 | 8.06 | 20.86 |
图3 煤与烘焙前后玉米秆单独研磨粒径分布[(a), (b), (c)为不同烘焙气氛影响对照; (d), (e), (f)为不同烘焙温度影响对照]
Fig.3 Particle size distribution of separate grinding coal, raw and torrefied corn stalk[(a), (b), (c) and (d), (e), (f) reaction condition was different torrefied atmosphere and temperature]
图4 煤与烘焙前后玉米秆共磨粒径分布[(a), (b), (c)为不同烘焙气氛影响对照; (d), (e), (f)为不同烘焙温度影响对照]
Fig.4 Particle size distribution of mixed grinding coal, raw and torrefied corn stalk[(a), (b), (c) and (d), (e), (f) reaction condition was different torrefied atmosphere and temperature]
图5 煤与烘焙前后玉米秆不同混合比例下共磨粒径分布[(a), (b), (c)(d), (e)(f)分别为原样、氮气烘焙样、干烟气烘焙样、湿烟气烘焙样与煤不同混合比例影响对照]
Fig.5 Particle size distribution of mixed grinding coal, raw and torrefied corn stalk in different mixing ratio[(a), (b), (c)(d), (e)(f) reaction condition was different mixing ratio]
图6 煤与烘焙玉米秆研磨的R90和R200[(a)(b), (c)(d)分别为煤与烘焙玉米秆研磨的R90和R200]
Fig.6 R90 and R200 of grinding coal, raw and torrefied corn stalk[(a)(b), (c)(d) reaction condition was R90 and R200 of samples]
1 | Bach Q V, Skreiberg Ø. Upgrading biomass fuels via wet torrefaction: a review and comparison with dry torrefaction[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 665-677. |
2 | 郑丁乾, 田善君, 马思宁, 等. 基于空间分析方法的我国燃煤耦合生物质发电潜力分析[J]. 洁净煤技术, 2022, 28(6): 35-43. |
Zheng D Q, Tian S J, Ma S N, et al. Potential analysis of coal-biomass co-firing power generation in China based on a spatial analysis method[J]. Clean Coal Technology, 2022, 28(6): 35-43. | |
3 | Rokni E, Panahi A, Ren X H, et al. Curtailing the generation of sulfur dioxide and nitrogen oxide emissions by blending and oxy-combustion of coals[J]. Fuel, 2016, 181: 772-784. |
4 | Manzano-Agugliaro F, Alcayde A, Montoya F G, et al. Scientific production of renewable energies worldwide: an overview[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 134-143. |
5 | 辛保安, 单葆国, 李琼慧, 等. “双碳”目标下“能源三要素”再思考[J]. 中国电机工程学报, 2022, 42(9): 3117-3126. |
Xin B A, Shan B G, Li Q H, et al. Rethinking of the “three elements of energy” toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(9): 3117-3126. | |
6 | Chen W H, Peng J H, Bi X T. A state-of-the-art review of biomass torrefaction, densification and applications[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 847-866. |
7 | Cahyanti M N, Doddapaneni T R K, Kikas T. Biomass torrefaction: an overview on process parameters, economic and environmental aspects and recent advancements[J]. Bioresource Technology, 2020, 301: 122737. |
8 | Chen W H, Kuo P C. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry[J]. Energy, 2010, 35(6): 2580-2586. |
9 | Bach Q V, Chen W H. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): a state-of-the-art review[J]. Bioresource Technology, 2017, 246: 88-100. |
10 | He C, Tang C Y, Li C H, et al. Wet torrefaction of biomass for high quality solid fuel production: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 259-271. |
11 | Deng J, Wang G J, Kuang J H, et al. Pretreatment of agricultural residues for co-gasification via torrefaction[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(2): 331-337. |
12 | Shankar Tumuluru J, Sokhansanj S, Hess J R, et al. A review on biomass torrefaction process and product properties for energy applications[J]. Industrial Biotechnology, 2011, 7(5): 384-401. |
13 | Wang C W, Peng J H, Li H, et al. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets[J]. Bioresource Technology, 2013, 127: 318-325. |
14 | Mei Y Y, Liu R J, Yang Q, et al. Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas[J]. Bioresource Technology, 2015, 177: 355-360. |
15 | Onsree T, Tippayawong N, Williams T, et al. Torrefaction of pelletized corn residues with wet flue gas[J]. Bioresource Technology, 2019, 285: 121330. |
16 | Su Y H, Zhang S P, Liu L Q, et al. Investigation of representative components of flue gas used as torrefaction pretreatment atmosphere and its effects on fast pyrolysis behaviors[J]. Bioresource Technology, 2018, 267: 584-590. |
17 | 杜一帆. 非惰性气氛烘焙稻壳与煤的混燃特性研究[D]. 武汉: 华中科技大学, 2017. |
Du Y F. Investigation of co-combustion characteristics of non-inert torrefied rice husk and coal[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
18 | Lasek J A, Kopczyński M, Janusz M, et al. Combustion properties of torrefied biomass obtained from flue gas-enhanced reactor[J]. Energy, 2017, 119: 362-368. |
19 | Chen W H, Lin B J, Lin Y Y, et al. Progress in biomass torrefaction: principles, applications and challenges[J]. Progress in Energy and Combustion Science, 2021, 82: 100887. |
20 | 孟春霖, 颜莹莹, 梁远, 等. 关于污泥火电厂协同焚烧的控制性指标的思考和建议[J]. 中国给水排水, 2021, 37(14): 46-55. |
Meng C L, Yan Y Y, Liang Y, et al. Thinking and suggestion on the control index of sludge co-incineration in thermal power plant[J]. China Water and Wastewater, 2021, 37(14): 46-55. | |
21 | Tumuluru J S, Wright C T, Hess J R, et al. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application[J]. Biofuels, Bioproducts and Biorefining, 2011, 5(6): 683-707. |
22 | Manouchehrinejad M, van Giesen I, Mani S. Grindability of torrefied wood chips and wood pellets[J]. Fuel Processing Technology, 2018, 182: 45-55. |
23 | Sakuragi K, Otaka M. Milling characteristics of coal and torrefied biomass blends in a roller mill[J]. ACS Omega, 2021, 6(44): 29814-29819. |
24 | 赵振伟, 陈雷, 伊晓路, 等. 烘焙提升纤维素类生物质热解气化性能的研究进展[J]. 化工进展, 2021, 40(5): 2509-2516. |
Zhao Z W, Chen L, Yi X L, et al. Research advances in improvement of cellulosic biomass pyrolysis/gasification process by torrefaction[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2509-2516. | |
25 | van der Stelt M J C, Gerhauser H, Kiel J H A, et al. Biomass upgrading by torrefaction for the production of biofuels: a review[J]. Biomass and Bioenergy, 2011, 35(9): 3748-3762. |
26 | Chen W H, Lu K M, Liu S H, et al. Biomass torrefaction characteristics in inert and oxidative atmospheres at various superficial velocities[J]. Bioresource Technology, 2013, 146: 152-160. |
27 | Uemura Y, Omar W, Othman N A, et al. Torrefaction of oil palm EFB in the presence of oxygen[J]. Fuel, 2013, 103: 156-160. |
28 | Zhao Z, Feng S, Zhao Y Y, et al. Investigation on the fuel quality and hydrophobicity of upgraded rice husk derived from various inert and oxidative torrefaction conditions[J]. Renewable Energy, 2022, 189: 1234-1248. |
29 | Dobó Z, Fry A. Investigation of co-milling Utah bituminous coal with prepared woody biomass materials in a Raymond Bowl Mill[J]. Fuel, 2018, 222: 343-349. |
30 | Rousset P, Aguiar C, Labbé N, et al. Enhancing the combustible properties of bamboo by torrefaction[J]. Bioresource Technology, 2011, 102(17): 8225-8231. |
31 | Sher F, Yaqoob A, Saeed F, et al. Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation[J]. Energy, 2020, 209: 118444. |
32 | Nhuchhen D, Basu P, Acharya B. A comprehensive review on biomass torrefaction[J]. International Journal of Renewable Energy and Biofuels, 2014: 1-56. |
33 | Zhang L, Wang Z Z, Ma J, et al. Analysis of functionality distribution and microstructural characteristics of upgraded rice husk after undergoing non-oxidative and oxidative torrefaction[J]. Fuel, 2022, 310: 122477. |
34 | Chen D Y, Cen K H, Cao X B, et al. Restudy on torrefaction of corn stalk from the point of view of deoxygenation and decarbonization[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 85-93. |
[1] | 吴贵豪, 朱有健, 樊纪原, 成伟, 蒋好, 杨海平, 陈汉平. 磷酸二氢铵对玉米秆烘焙及固定床燃烧颗粒物排放特性的影响[J]. 化工学报, 2021, 72(6): 3359-3367. |
[2] | 余作伟, 刘倩, 钟文琪, 周骏. 烘焙生物质燃烧过程中钾的赋存形态及析出迁移特性[J]. 化工学报, 2021, 72(4): 2258-2266. |
[3] | 朱有健, 张显显, 陈奕名, 吴学红, 杨海平, 陈汉平. 磷酸二氢钙对玉米秆灰熔融烧结特性的影响研究[J]. 化工学报, 2020, 71(7): 3313-3321. |
[4] | 蒋好,朱有健,刘恒,邵敬爱,成伟,杨鹏,吴贵豪,杨海平,陈汉平. 秸秆烘焙过程氯、硫释放及AAEMs迁徙转化特性研究[J]. 化工学报, 2020, 71(12): 5785-5792. |
[5] | 辛善志, 黄芳, 刘晓烨, 许庆利, 米铁. 烘焙中药渣的热解与燃烧特性及其动力学分析[J]. 化工学报, 2019, 70(8): 3142-3150. |
[6] | 王燕杰,应浩,孙云娟,江俊飞,余维金,许玉. 烘焙稻壳与不同煤化程度的煤共热解特性[J]. 化工进展, 2014, 33(03): 643-650. |
[7] | 李小民,林其钊. 玉米秆热解的最概然机理[J]. 化工学报, 2012, 63(8): 2599-2605. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 253
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 277
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||