化工学报 ›› 2024, Vol. 75 ›› Issue (10): 3763-3774.DOI: 10.11949/0438-1157.20240509

• 能源和环境工程 • 上一篇    下一篇

Quilghini变换法在求解密度跃变的水合物热分解Stefan模型精确解中的应用

李明川1,2(), 樊栓狮3, 徐赋海4, 卢惠东4, 李晓军4   

  1. 1.中国石油大学(华东)石油工程学院,山东 青岛 266580
    2.非常规油气开发教育部重点实验室(中国石油大学(华东)),山东 青岛 266580
    3.华南理工大学化学与化工学院,广东 广州 510641
    4.中国石化胜利油田分公司 东辛采油厂,山东 东营 257094
  • 收稿日期:2024-05-09 修回日期:2024-06-17 出版日期:2024-10-25 发布日期:2024-11-04
  • 通讯作者: 李明川
  • 作者简介:李明川(1976—),男,博士,副教授,iceswpi@126.com
  • 基金资助:
    中国科学院知识创新工程基金项目(KGCX2-SW-309)

Application of Quilghini transformation method to exact solutions of Stefan's models for thermal dissociation hydrate with density jump

Mingchuan LI1,2(), Shuanshi FAN3, Fuhai XU4, Huidong LU4, Xiaojun LI4   

  1. 1.School of Petroleum Engineering,China University of Petroleum, Qingdao 266580, Shandong, China
    2.Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum), Ministry of Education, Qingdao 266580, Shandong, China
    3.School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
    4.Dongxin Production Plant, Shengli Oil Field, SINOPEC, Dongying 257094, Shandong, China
  • Received:2024-05-09 Revised:2024-06-17 Online:2024-10-25 Published:2024-11-04
  • Contact: Mingchuan LI

摘要:

利用质量守恒原理建立了考虑密度跃变的天然气水合物热分解Stefan模型,通过对有弱解的均匀散度方程分部积分详细推导一般形式的Rankine-Hugoniot跳跃关系,获得了关于界面速度项三次方形式的Stefan耦合条件,但在工程需要误差范围内三次方可以忽略。在Stefan模型中引入速度项使得模型的精确解难以得到。Quilghini变换将质量转化为空间变量,Stefan模型的速度项消失,成为经典的类Stefan模型,再经Quilghini逆变换得到了密度跃变Stefan模型的精确解析解。通过Matlab编程,结合实例研究了超越方程解、温度分布和分解界面的规律性,探索注入温度和密度跃变对超越方程解、穿透深度、穿透时间和水合物位移的影响,密度跃变引起的误差在工程允许范围内。

关键词: Quilghini变换, 密度跃变, Stefan模型, Rankine-Hugoniot跳跃关系, 天然气水合物

Abstract:

Stefan's models for thermal decomposition of natural gas hydrate with density jump is established by using the principle of mass conservation. The general form of Rankine-Hugoniot jump relation was derive in detail, and the Stefan coupling condition in cubic form with respect to the velocity of interface was obtained, but the cubic term could be ignored within the errors of engineering requirements. It is the introduction of velocity terms in the Stefan model that makes it difficult to obtain an exact solution to the model. The mass as a space variable was introduced by the Quilghini transformation, the velocity term was vanished, and become the classical Stefan-like's models. Followed by the inverse Quilghini transformation, the accurate analytical solutions of the Stefan's models with density jump could be successfully gained. Through Matlab programming, a concrete example was taken, laws on the solutions of transcendental equation, temperature distribution and dissociation interface were studied, the influences of injection temperature and density jump on solutions of transcendental equation, penetration depth, penetration time and hydrate displacement were probed. The errors caused by density jump were within the permissible ranges of engineering.

Key words: Quilghini transformation, density jump, Stefan's model, Rankine-Hugoniot jump relation, natural gas hydrate

中图分类号: