化工学报 ›› 2022, Vol. 73 ›› Issue (5): 2130-2139.DOI: 10.11949/0438-1157.20220077
唐翠萍1,2,3(),张雅楠1,2,3,4,梁德青1,2,3,李祥1,2,3,5
收稿日期:
2022-01-14
修回日期:
2022-02-22
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
唐翠萍
作者简介:
唐翠萍(1977—),女,博士,副研究员,基金资助:
Cuiping TANG1,2,3(),Yanan ZHANG1,2,3,4,Deqing LIANG1,2,3,Xiang LI1,2,3,5
Received:
2022-01-14
Revised:
2022-02-22
Online:
2022-05-05
Published:
2022-05-24
Contact:
Cuiping TANG
摘要:
注入动力学抑制剂是一种有效缓解天然气水合物管道堵塞的方法。本文以动力学抑制剂聚乙烯基己内酰胺(PVCap)结构为基础,将氧乙基和酯基引入PVCap的分子链端,合成了新抑制剂PVCap-XA1,在高压定容反应釜内评价了PVCap-XA1对甲烷水合物形成的抑制作用,并采用粉末X射线衍射、低温激光拉曼光谱和冷冻扫描电子显微镜研究了抑制剂对甲烷水合物结构和形态的影响。实验结果表明,相同实验条件下PVCap-XA1比PVCap具有更好的抑制作用;微观测试表明PVCap-XA1的加入没有改变甲烷水合物的晶体结构,但会使甲烷水合物晶面扭曲变形,可以降低水合物大小笼占有比(IL/IS),使得甲烷分子更难进入水合物大笼,同时PVCap-XA1的加入使甲烷水合物的微观形貌由多孔有序变得更致密而不利于气体通过。
中图分类号:
唐翠萍, 张雅楠, 梁德青, 李祥. 聚乙烯己内酰胺链端改性及其对甲烷水合物形成的抑制作用研究[J]. 化工学报, 2022, 73(5): 2130-2139.
Cuiping TANG, Yanan ZHANG, Deqing LIANG, Xiang LI. Inhibition effect of chain end modified polyvinyl caprolactam on methane hydrate formation[J]. CIESC Journal, 2022, 73(5): 2130-2139.
Sample | Concentration/%(mass) | To/℃ | Maximum subcooling degree/℃ |
---|---|---|---|
pure water | — | 8.8 | 3.0 |
PVCap | 0.5 1.0 2.0 | 7.2 5.3 3.4 | 4.5 5.7 7.9 |
PVCap-XA1 | 0.5 1.0 2.0 | 4.3 2.5 0.9 | 7.0 9.1 10.5 |
表1 PVCap和PVCap-XA1在不同浓度下的To和最大过冷度
Table 1 To and maximum subcooling of PVCap and PVCap-XA1 at different concentrations
Sample | Concentration/%(mass) | To/℃ | Maximum subcooling degree/℃ |
---|---|---|---|
pure water | — | 8.8 | 3.0 |
PVCap | 0.5 1.0 2.0 | 7.2 5.3 3.4 | 4.5 5.7 7.9 |
PVCap-XA1 | 0.5 1.0 2.0 | 4.3 2.5 0.9 | 7.0 9.1 10.5 |
图10 纯水和不同浓度PVCap-XA1体系存在下形成的甲烷水合物的Raman谱图
Fig.10 Raman spectra of CH4 hydrates in the presence of PVCap-XA1 with different concentration and pure water
图11 纯水和添加2.0%(质量) PVCap-XA1形成甲烷水合物的电镜图
Fig.11 Microstructure pictures of the methane hydrate generated in the presence of 2.0%(mass) PVCap-XA1 and pure water
1 | Sloan E D. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353-359. |
2 | 代淼, 周理, 周亚平. 合成天然气水合物实验研究[J]. 化学进展, 2004, 16(5): 747-750. |
Dai M, Zhou L, Zhou Y P. Progress in the synthesis of natural gas hydrate[J]. Progress in Chemistry, 2004, 16(5): 747-750. | |
3 | 唐翠萍, 周雪冰, 梁德青. X 射线衍射分析聚乙烯吡咯烷酮对水合物分解过程的影响[J]. 化工学报, 2021, 72(2): 1125-1131. |
Tang C P, Zhou X B, Liang D Q. Effect of X-ray diffraction analysis of polyvinylpyrrolidone on decomposition process of hydrate[J]. CIESC Journal, 2021, 72(2): 1125-1131. | |
4 | Bishnoi P R, Dholabhai P D. Experimental study on propane hydrate equilibrium conditions in aqueous electrolyte solutions[J]. Fluid Phase Equilibria, 1993, 83(1): 455-462. |
5 | 任俊杰, 龙臻, 梁德青. 离子液体与PVP K90复合抑制剂对甲烷水合物的生成影响[J]. 化工学报, 2020, 71(11): 5256-5264. |
Ren J J, Long Z, Liang D Q. Effect of complex inhibitors containing ionic liquids and PVP K90 on formation of methane hydrate[J]. CIESC Journal, 2020, 71(11): 5256-5264. | |
6 | Panter J L, Ballard A L, Sum A K, et al. Hydrate plug dissociation via nitrogen purge: experiments and modeling[J]. Energy & Fuels, 2011, 25(6): 2572-2578. |
7 | Kelland M A. History of the development of low dosage hydrate inhibitors[J]. Energy & Fuels, 2006, 20(3): 825-847. |
8 | Lee J D, Englezos P. Enhancement of the performance of gas hydrate kinetic inhibitors with polyethylene oxide[J]. Chemical Engineering Science, 2005, 60(19): 5323-5330. |
9 | Wang Y H, Fan S S, Lang X M. Reviews of gas hydrate inhibitors in gas-dominant pipelines and application of kinetic hydrate inhibitors in China[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2118-2132. |
10 | Perrin A, Musa O M, Steed J W. The chemistry of low dosage clathrate hydrate inhibitors[J]. Chemical Society Reviews, 2013, 42(5): 1996-2015. |
11 | 王胜杰, 何小霞, 沈建东, 等. 聚乙烯吡咯烷酮在天然气水合物生成中的作用[J]. 现代化工, 2004, 24(3): 46-48. |
Wang S J, He X X, Shen J D, et al. Effects of poly(vinyl pyrrolidone)on formation of natural gas hydrate[J]. Modern Chemical Industry, 2004, 24(3): 46-48. | |
12 | Sloan Jr E D. Method for controlling clathrate hydrates in fluid systems[R]. Colorado School of Mines, Golden, CO (United States), 1995. |
13 | Lederhos J P, Long J P, Sum A, et al. Effective kinetic inhibitors for natural gas hydrates[J]. Chemical Engineering Science, 1996, 51(8): 1221-1229. |
14 | 裘俊红, 张金锋. 水合物动力学抑制研究现状[J]. 化学工程, 2004,32(6): 23-26. |
Qiu J H, Zhang J F. Status of the hydrate kinetic inhibition research[J]. Chemical Engineering (China), 2004, 32(6): 23-26. | |
15 | 樊栓狮, 王燕鸿, 郎雪梅. 天然气水合物动力学抑制技术研究进展[J]. 天然气工业, 2011, 31(12): 99-109, 132. |
Fan S S, Wang Y H, Lang X M. Progress in the research of kinetic hydrate inhibitors[J]. Natural Gas Industry, 2011, 31(12): 99-109, 132. | |
16 | 王庆毓, 李鹏飞, 马尚, 等. 天然气水合物抑制剂的分子动力学研究进展[J]. 高分子通报, 2018(9): 23-28. |
Wang Q Y, Li P F, Ma S, et al. Progress in molecular dynamics studies of natural gas hydrate inhibitors[J]. Polymer Bulletin, 2018(9): 23-28. | |
17 | Kvamme B, Kuznetsova T, Aasoldsen K. Molecular simulations as a tool for selection of kinetic hydrate inhibitors[J]. Molecular Simulation, 2005, 31(14/15): 1083-1094. |
18 | Zhang Q, Shen X D, Zhou X B, et al. Inhibition effect study of carboxyl-terminated polyvinyl caprolactam on methane hydrate formation[J]. Energy & Fuels, 2017, 31(1): 839-846. |
19 | Reyes F T, Kelland M A. First investigation of the kinetic hydrate inhibitor performance of polymers of alkylated N-vinyl pyrrolidones[J]. Energy & Fuels, 2013, 27(7): 3730-3735. |
20 | Foo C W, Ruan L, Lou X. The inhibition performance in relation to the adsorption of a polymeric kinetic inhibitor towards THF hydrates in the presence of methanol, ethanol and monoethylene glycol[J]. Journal of Natural Gas Science and Engineering, 2016, 35(9): 1587-1593. |
21 | Long Z, Lu Z L, Ding Q H, et al. Evaluation of kinetic inhibition of methane hydrate formation by a copolymer of N-vinylcaprolactam with 1-vinylimidazole[J]. Energy & Fuels, 2019, 33(10): 10133-10142. |
22 | Wan L, Liang D Q, Ding Q H, et al. Investigation into the inhibition of methane hydrate formation in the presence of hydroxy-terminated poly(N-vinylcaprolactam)[J]. Fuel, 2019, 239(3): 173-179. |
23 | 于在乾. 聚乙烯己内酰胺基温敏复合材料的制备及吸附性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
Yu Z Q. Preparation and absorption ability studies of thermo responsive PVCL based composites[D]. Harbin: Harbin Institute of Technology, 2018. | |
24 | 柏少卿, 权静, 聂华丽, 等. 聚(乙烯基己内酰胺-co-甲基丙烯酸) 纳米纤维的电纺制备及其表征[J]. 化工新型材料, 2013, 41(4): 62-64. |
Bai S Q, Quan J, Nie H L, et al. Preparation, electrospinning and characterization of p(NVCL-co-MAA)[J]. New Chemical Materials, 2013, 41(4): 62-64. | |
25 | Sloan E D, Subramanian S, Matthews P N, et al. Quantifying hydrate formation and kinetic inhibition[J]. Industrial & Engineering Chemistry Research, 1998, 37(8): 3124-3132. |
26 | Xu S R, Fan S S, Fang S T, et al. Excellent synergy effect on preventing CH4 hydrate formation when glycine meets polyvinylcaprolactam[J]. Fuel, 2017, 206: 19-26. |
27 | 刘昌岭, 孟庆国. X射线衍射法在天然气水合物研究中的应用[J]. 岩矿测试, 2014, 33(4): 468-479. |
Liu C L, Meng Q G. Applications of X-ray diffraction in natural gas hydrate research[J]. Rock and Mineral Analysis, 2014, 33(4): 468-479. | |
28 | Takeya S, Ripmeester J A. Anomalous preservation of CH4 hydrate and its dependence on the morphology of hexagonal ice[J]. ChemPhysChem: a European Journal of Chemical Physics and Physical Chemistry, 2010, 11(1): 70-73. |
29 | Sa J H, Kwak G H, Han K, et al. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids[J]. Scientific Reports, 2016, 6: 31582. |
30 | Daraboina N, Ripmeester J, Walker V K, et al. Natural gas hydrate formation and decomposition in the presence of kinetic inhibitors (3):Structural and compositional changes[J]. Energy & Fuels, 2011, 25(10): 4398-4404. |
31 | 陈勇, 周瑶琪, 任拥军, 等. 甲烷水合物拉曼光谱特征及其在流体包裹体分析中的应用[J]. 中国石油大学学报(自然科学版), 2007, 31(6): 13-17. |
Chen Y, Zhou Y Q, Ren Y J, et al. Raman spectroscopy characteristic of methane hydrate and its application to analysis of fluid inclusions[J]. Journal of China University of Petroleum (Edition of Natural Science), 2007, 31(6): 13-17. | |
32 | Qin J F, Kuhs W F. Quantitative analysis of gas hydrates using Raman spectroscopy[J]. AIChE Journal, 2013, 59(6): 2155-2167. |
33 | Du S, Han X, Zheng L, et al. Synthesis and phase behavior of methane hydrate in a layered double hydroxide: an experimental and molecular dynamics simulation study[J]. The Journal of Physical Chemistry C, 2021, 125(14): 7889-7897. |
34 | Tang C P, Zhou X B, Li D L, et al. In situ Raman investigation on mixed CH4-C3H8 hydrate dissociation in the presence of polyvinylpyrrolidone[J]. Fuel, 2018, 214: 505-511. |
35 | Falenty A, Kuhs W F, Glockzin M, et al. “Self-preservation” of CH4 hydrates for gas transport technology: pressure-temperature dependence and ice microstructures[J]. Energy & Fuels, 2014, 28(10): 6275-6283. |
36 | 赵欣, 邱正松, 江琳, 等. 动力学抑制剂作用下天然气水合物生成过程的实验分析[J]. 天然气工业, 2014, 34(2): 105-110. |
Zhao X, Qiu Z S, Jiang L, et al. An experimental analysis of natural gas hydrate formation at the presence of kinetic hydrate inhibitors[J]. Natural Gas Industry, 2014, 34(2): 105-110. | |
37 | Urdahl O, Lund A, Mørk P, et al. Inhibition of gas hydrate formation by means of chemical additives (I): Development of an experimental set-up for characterization of gas hydrate inhibitor efficiency with respect to flow properties and deposition[J]. Chemical Engineering Science, 1995, 50(5): 863-870. |
38 | Varma-Nair M, Costello C A, Colle K S, et al. Thermal analysis of polymer-water interactions and their relation to gas hydrate inhibition[J]. Journal of Applied Polymer Science, 2007, 103(4): 2642-2653. |
39 | Sa J H, Kwak G H, Lee B R, et al. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation[J]. Scientific Reports, 2013, 3: 2428. |
40 | Cohen J M, Wolf P F, Young W D. Enhanced hydrate inhibitors: powerful synergism with glycol ethers[J]. Energy & Fuels, 1998, 12(2): 216-218. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[3] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[4] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[5] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[6] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[7] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
[8] | 李明川, 樊栓狮, 徐赋海, 卢惠东, 李晓军. 水合物热分解Stefan相变模型解的存在性及Laplace变换求解[J]. 化工学报, 2023, 74(4): 1746-1754. |
[9] | 胡晗, 杨亮, 李春晓, 刘道平. 天然烟浸滤液水合物法储甲烷动力学研究[J]. 化工学报, 2023, 74(3): 1313-1321. |
[10] | 彭晓婉, 郭笑楠, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8浆液法分离CH4/N2的双吸收-吸附塔工艺流程建模与模拟[J]. 化工学报, 2023, 74(2): 784-795. |
[11] | 廖珊珊, 张少刚, 陶骏骏, 刘家豪, 汪金辉. 竖直射流火撞击障碍管道数值模拟分析[J]. 化工学报, 2022, 73(9): 4226-4234. |
[12] | 沈嘉辉, 王侃宏, 郁达伟, 胡大洲, 魏源送. 游离氨调理污泥厌氧消化优化产甲烷过程与强化有机物释放[J]. 化工学报, 2022, 73(9): 4147-4155. |
[13] | 戴文华, 辛忠. Si掺杂对Cu/ZrO2催化CO2加氢制甲醇性能的影响[J]. 化工学报, 2022, 73(8): 3586-3596. |
[14] | 高端辉, 肖卫强, 高峰, 夏倩, 汪曼秋, 卢昕博, 詹晓力, 张庆华. 聚酰亚胺基气凝胶材料的制备与应用[J]. 化工学报, 2022, 73(7): 2757-2773. |
[15] | 陆勇, 刘对平, 李晨阳, 周吉彬, 叶茂. 光纤内窥图像法测量MTO催化剂表观形貌及其积炭量的实验研究[J]. 化工学报, 2022, 73(6): 2662-2668. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||