| 1 |
Arpagaus C, Bless F, Uhlmann M, et al. High temperature heat pumps: market overview, state of the art, research status, refrigerants, and application potentials[J]. Energy, 2018, 152: 985-1010.
|
| 2 |
董益秀, 王如竹. 高温热泵的循环、工质研究及应用展望[J]. 化工学报, 2023, 74(1): 133-144.
|
|
Dong Y X, Wang R Z. High temperature heat pump: cycle configurations, working fluids and application potentials[J]. CIESC Journal, 2023, 74(1): 133-144.
|
| 3 |
王永真, 康利改, 张靖, 等. 综合能源系统的发展历程、典型形态及未来趋势[J]. 太阳能学报, 2021, 42(8): 84-95.
|
|
Wang Y Z, Kang L G, Zhang J, et al. Development history, typical form and future trend of integrated energy system[J]. Acta Energiae Solaris Sinica, 2021, 42(8): 84-95.
|
| 4 |
You J F, Zhang X, Gao J T, et al. Entransy based heat exchange irreversibility analysis for a hybrid absorption-compression heat pump cycle[J]. Energy, 2024, 289: 129990.
|
| 5 |
Wang X D, Hwang Y, Radermacher R. Two-stage heat pump system with vapor-injected scroll compressor using R410A as a refrigerant[J]. International Journal of Refrigeration, 2009, 32(6): 1442-1451.
|
| 6 |
Hu B, Wu D, Wang L W, et al. Exergy analysis of R1234ze(Z) as high temperature heat pump working fluid with multi-stage compression[J]. Frontiers in Energy, 2017, 11(4): 493-502.
|
| 7 |
于晓慧. 高温热泵系统性能及性能预测研究[D]. 天津: 天津大学, 2014.
|
|
Yu X H. Study on performance and performance prediction of high temperature heat pump system[D]. Tianjin: Tianjin University, 2014.
|
| 8 |
董艳芳, 朱辉, 曾召田, 等. 基于遗传算法神经网络的地源热泵夏季低负荷运行性能预测分析[J]. 科学技术与工程, 2022, 22(12): 4984-4992.
|
|
Dong Y F, Zhu H, Zeng Z T, et al. Analysis on low load performance prediction of ground source heat pumps in summer based on genetic algorithm and back propagation neural network[J]. Science Technology and Engineering, 2022, 22(12): 4984-4992.
|
| 9 |
Zhao H, Li P X, Li J X, et al. Applying neural network model to real-time frosting detection and intelligent defrosting control for air source heat pump[J]. Applied Energy, 2025, 377: 124444.
|
| 10 |
严磊. 基于数据挖掘的地源热泵系统性能预测及运行策略研究[D]. 武汉: 华中科技大学, 2018.
|
|
Yan L. Research on performance prediction and operation strategy of ground source heat pump system based on data mining[D]. Wuhan: Huazhong University of Science and Technology, 2018.
|
| 11 |
张东, 李金平, 刘伟, 等. 喷气增焓空气源热泵热性能评价及预测[J]. 化工学报, 2014, 65(12): 5004-5009.
|
|
Zhang D, Li J P, Liu W, et al. Thermal performance evaluation and prediction of enhanced vapor injection air source heat pump[J]. CIESC Journal, 2014, 65(12): 5004-5009.
|
| 12 |
Xu Y J, Zhao R Y, Wu K, et al. Experimental investigation and validation on an air-source heat pump frosting state recognition method based on fan current fluctuation signal and machine learning[J]. Energy, 2024, 291: 130372.
|
| 13 |
Wang Y F, Li W Y, Zhang Z Q, et al. Performance evaluation and prediction for electric vehicle heat pump using machine learning method[J]. Applied Thermal Engineering, 2019, 159: 113901.
|
| 14 |
Ren H S, Xu C L, Lyu Y L, et al. A thermodynamic-law-integrated deep learning method for high-dimensional sensor fault detection in diverse complex HVAC systems[J]. Applied Energy, 2023, 351: 121830.
|
| 15 |
纪守领, 李进锋, 杜天宇, 等. 机器学习模型可解释性方法、应用与安全研究综述[J]. 计算机研究与发展, 2019, 56(10): 2071-2096.
|
|
Ji S L, Li J F, Du T Y, et al. Survey on techniques, applications and security of machine learning interpretability[J]. Journal of Computer Research and Development, 2019, 56(10): 2071-2096.
|
| 16 |
陈珂锐, 孟小峰. 机器学习的可解释性[J]. 计算机研究与发展, 2020, 57(9): 1971-1986.
|
|
Chen K R, Meng X F. Interpretation and understanding in machine learning[J]. Journal of Computer Research and Development, 2020, 57(9): 1971-1986.
|
| 17 |
Song Y, Peskova M, Rolando D, et al. Estimating electric power consumption of in situ residential heat pump systems: a data-driven approach[J]. Applied Energy, 2023, 352: 121971.
|
| 18 |
Lu S L, Li Q P, Bai L, et al. Performance predictions of ground source heat pump system based on random forest and back propagation neural network models[J]. Energy Conversion and Management, 2019, 197: 111864.
|
| 19 |
Lei Q, Zhang C S, Shi J Y, et al. Machine learning based refrigerant leak diagnosis for a vehicle heat pump system[J]. Applied Thermal Engineering, 2022, 215: 118524.
|
| 20 |
Genuer R, Poggi J M, Tuleau-Malot C. Variable selection using random forests[J]. Pattern Recognition Letters, 2010, 31(14): 2225-2236.
|
| 21 |
Wu D, Hu B, Wang R Z, et al. The performance comparison of high temperature heat pump among R718 and other refrigerants[J]. Renewable Energy, 2020, 154: 715-722.
|
| 22 |
吴迪, 胡斌, 王如竹, 等. 水蒸气准饱和压缩高温热泵循环性能分析[J]. 化工学报, 2023, 74(S1): 45-52.
|
|
Wu D, Hu B, Wang R Z, et al. Performance analysis of water vapor quasi-saturated compression high temperature heat pump system[J]. CIESC Journal, 2023, 74(S1): 45-52.
|
| 23 |
吕灿仁. 热力学第一定律和第二定律效率[J]. 能源, 1983, 5(1): 29-31.
|
|
Lyu C R. Efficiency of the first and second laws of thermodynamics[J]. Energy of China, 1983, 5(1): 29-31.
|
| 24 |
Xu Z Y, Gao J T, Hu B, et al. Multi-criterion comparison of compression and absorption heat pumps for ultra-low grade waste heat recovery[J]. Energy, 2022, 238: 121804.
|
| 25 |
Kim S, Ouyang M, Zhang X. Compute spearman correlation coefficient with Matlab/CUDA[C]//2012 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). Ho Chi Minh City: IEEE, 2012.
|
| 26 |
Rigatti S J. Random forest[J]. Journal of Insurance Medicine, 2017, 47(1): 31-39.
|
| 27 |
Huo W W, Li W E, Zhang Z H, et al. Performance prediction of proton-exchange membrane fuel cell based on convolutional neural network and random forest feature selection[J]. Energy Conversion and Management, 2021, 243: 114367.
|
| 28 |
Wang Z Y, Wang Y R, Zeng R C, et al. Random Forest based hourly building energy prediction[J]. Energy and Buildings, 2018, 171: 11-25.
|
| 29 |
Mui H W, Chu C W. Forecasting the spot price of gold:combined forecast approaches versus a composite forecast approach [J]. Journal of Applied Statistics, 199, 20(1): 13-23.
|
| 30 |
Renaud O, Victoria-Feser M P. A robust coefficient of determination for regression[J]. Journal of Statistical Planning and Inference, 2010, 140(7): 1852-1862.
|