化工学报 ›› 2018, Vol. 69 ›› Issue (S1): 87-94.DOI: 10.11949/j.issn.0438-1157.20180259
罗琳, 杨博, 李宏光
收稿日期:
2018-03-08
修回日期:
2018-05-10
出版日期:
2018-09-30
发布日期:
2018-09-30
通讯作者:
李宏光,E-mail:lihg@mail.buct.edu.cn
LUO Lin, YANG Bo, LI Hongguang
Received:
2018-03-08
Revised:
2018-05-10
Online:
2018-09-30
Published:
2018-09-30
摘要:
工业控制系统由于设备老化而导致控制性能发生变化,而传统的控制性能评价方法对于这种慢时变特性具有局限性。提出了一种基于变权动态多属性决策的控制性能评价方法。首先在对系统性能进行判断时,利用系统故障率与运行时间相结合的计算方法对系统的运行状态进行划分,获得不同运行阶段的决策信息;采用四个评价指标分别为超调量、非线性指标、输出方差、阀黏滞指标构造多属性决策判断矩阵,对老化慢时变系统进行评价,并运用色谱分析法计算决策过程中属性权重的变化,最终确定当前性能运行状态;将该方法应用于某工业DMF回收装置中,对比实验结果验证了该方法的有效性。
中图分类号:
罗琳, 杨博, 李宏光. 基于动态多属性决策方法的工业过程控制性能评价[J]. 化工学报, 2018, 69(S1): 87-94.
LUO Lin, YANG Bo, LI Hongguang. A dynamic multi-attribute decision making approach to industrial process control performance evaluations[J]. CIESC Journal, 2018, 69(S1): 87-94.
[1] | VERONESI M,VISIOLI A. Performance assessment and retuning of PID controllers for integral processes[J]. Journal of Process Control, 2010, 20(3):261-269. |
[2] | BIALKOWSKI W L. Dreams versus reality:a view from both sides of the gap[J]. Pulp & Paper Canada, 1993, 94(11):19-27. |
[3] | JELALI M. Control system performance monitoring[J]. Methoden und Anwendungen der Steuerungs-, Regelungs-und Informationstechnik, 2010, 58(5):286-288. |
[4] | HARRIS T J. Assessment of control loop performance[J]. Canadian Journal of Chemical Engineering, 1989, 67(5):856-861. |
[5] | DESBOROUGH L,HARRIS T. Performance assessment measures for univariate feed forward feedback control[J].Canadian Journal of Chemical Engineering,1993,71(4):1186-1197. |
[6] | KO B S,EDGER T E. Performance assessment of cascade control loops[J].AIChE Journal,2000,46(2):281-291. |
[7] | HUANG B,SHAH S L,FUJⅡ H. The unitary interactor matrix and its estimation using closed-loop data[J].Journal of Process Control,1997,7(3):95-207. |
[8] | THORNHILL N F, OETTINGER M, FEDENCZUK P. Refinery-wide control loop performance assessment[J]. Journal of Process Control, 1999, 9(1999):109-124. |
[9] | 张荣金, 张泉灵. 基于历史性能基准的模型预测控制性能监控[J]. 计算机与应用化学, 2011, 28(3):275-278. ZHANG R J,ZHANG Q L. Model predictive control performance monitoring based on historical performance benchmarks[J]. Computers and Applied Chemistry,2011, 28(3):275-278. |
[10] | SHANG L, TIAN X, CAI L. A multi-index control performance assessment method based on historical prediction error covariance[J]. International Federation of Automatic Control,2017, 50(1):13892-13897. |
[11] | KHAMSEH S A, SEDIGH A K, MOSHIRI B, et al. Control performance assessment based on sensor fusion techniques[J]. Control Engineering Practice, 2016, 49:14-28. |
[12] | GAO X, YANG F, SHANG C, et al. A review of control loop monitoring and diagnosis:prospects of controller maintenance in big data era[J]. Chinese Journal of Chemical Engineering, 2016, 24(8):952-962. |
[13] | JELALI M. Diagnosis of stiction-related actuator problems[M]//Advances in Industrial Control. London:Springer,2013:265-300. |
[14] | CHOUDHURY M A A S, THORNHILL N F, SHAH S L. Modelling valve stiction[J]. Control Engineering Practice, 2005, 13(5):641-658. |
[15] | YAMASSHITA Y. Qualitative Analysis for Detection of Stiction in Control Valves[M]. Berlin:Springer Berlin Heidelberg, 2004:391-397. |
[16] | 王培宇. 工业控制回路非线性检测研究[D]. 杭州:浙江大学, 2015. WANG P Y. Research on nonlinear detection of industrial control loops[D].Hangzhou:Zhejiang University, 2015. |
[17] | PATWARDHAN R S, SHAH S L, QI K Z. Assessing the performance of model predictive controllers[J]. Canadian Journal of Chemical Engineering, 2002, 80(5):954-966. |
[18] | SCHAFER J,CINAR A. Multivariable MPC system performance assessment, monitoring, and diagnosis[J]. Process Control, 2004,14(2):113-129. |
[19] | 张敏敏. 基于模型预测控制的动态多属性决策方法[D]. 北京:北京化工大学,2016. ZHANG M M. Dynamic multi-attribute decision-making method based on model predictive control[D]. Beijing:Beijing University of Chemical Technology, 2016 |
[20] | WANG Z, HAN Y, GENG Z, et al. PID control loop performance assessment and diagnosis based on DEA-related MCDA[C]//International Symposium on Advanced Control of Industrial Processes.New York:IEEE, 2017:535-540. |
[21] | WEI G. Grey relational analysis model for dynamic hybrid multiple attribute decision making[J]. Knowledge-Based Systems, 2011, 24(5):672-679. |
[22] | CHEN Y, LI B. Dynamic multi-attribute decision making model based on triangular intuitionistic fuzzy numbers[J]. Scientia Iranica, 2011, 18(2):268-274. |
[23] | SU X, LI H, JIANG H. Internet of things decision technology based on dynamic multi-attibute decision making[C]//International Conference on Software Intelligence Technologies and Applications & International Conference on Frontiers of Internet of Things. IET, 2014:216-220. |
[24] | AL-HARBI A S. Application of the AHP in project management[J]. International Journal of Project Management, 2001, 19(1):19-27. |
[25] | 邓雪, 李家铭, 曾浩健,等. 层次分析法权重计算方法分析及其应用研究[J]. 数学的实践与认识, 2012, 42(7):93-100. DENG X,LI J M,ZENG H J,et al. Analytic hierarchy process weight calculation method analysis and application research[J]. Mathematics in Practice and Theory,2012,42(7):93-100. |
[26] | ZHI F, TIAN Y, QUAN Z. The sensitivity analysis to attribute values based on the additive weighting model in multiple attribute decision making[J]. Journal of Northeastern University, 2002, 23(1):83-86. |
[27] | YAGER R R. On ordered weighted averaging aggregation operators in multi-criteria decision making[J]. Readings in Fuzzy Sets for Intelligent Systems, 1993, 18(1):80-87. |
[28] | CHOUDHURY M A A S, SHAH S L,THORNHILL N F. Diagnosis of poor control-loop performance using higher-order statistics[J]. Automatica, 2004, 40(10):1719-1728. |
[29] | 韩俊林, 王树青, 谢磊,等. 一种控制阀黏滞特性快速检测方法研究[J]. 化工自动化及仪表, 2010, 37(3):47-51. HAN J L,WANG S Q,XIE L, et al. A study on a rapid detection method of viscous characteristics of control valves[J]. Control and Instruments in Chemical Industry,2010,37(3):47-51. |
[30] | 王慧芳, 杨荷娟, 何奔腾,等. 输变电设备状态故障率模型改进分析[J]. 电力系统自动化, 2011, 35(16):27-31. WANG H F,YANG H J,HE B T,et al. Improvement analysis of state failure rate model for power transmission equipment[J].Automation of Electric Power Systems,2011,35(16):27-31. |
[31] | 魏鹏程. DMF回收设备的节能探讨[J]. 聚氨酯工业, 2002, 17(4):43-46. WEI P C. Discussion on energy saving of DMF recovery equipment[J]. Polyurethane Industry,2002,17(4):43-46. |
[32] | 齐良才, 李宏光. 基于数据驱动的控制器性能多属性评价方法[J]. 华东理工大学学报, 2014, 40(2):244-250. QI L C,LI H G. A multi-attribute assessment method of controller performance based on data-driven[J]. Journal of East China University of Science and Technology,2014,40(2):244-250. |
[1] | 顾炳斌, 熊伟丽. 基于多块信息提取的PCA故障诊断方法[J]. 化工学报, 2019, 70(2): 736-749. |
[2] | 崔晓惠, 杨健, 侍洪波. 基于半监督正交因子分析的过程质量监控方法[J]. 化工学报, 2018, 69(12): 5130-5138. |
[3] | 李征, 王普, 高学金, 齐咏生, 常鹏. 基于信息增量矩阵的多阶段间歇过程质量预测[J]. 化工学报, 2018, 69(12): 5164-5172. |
[4] | 刘舒锐, 彭慧, 李帅, 周晓锋. 基于IJB-PCA-ICA算法的故障检测[J]. 化工学报, 2018, 69(12): 5146-5154. |
[5] | 刘旭婷, 李益国, 孙栓柱, 刘西陲, 沈炯. 基于稀疏局部嵌入深度卷积网络的冷水机组故障诊断方法[J]. 化工学报, 2018, 69(12): 5155-5163. |
[6] | 辜小花, 张堃, 王甜, 候松, 宋鸿飞, 李太福, 邱奎. 基于CW-HCA联合指标的高含硫天然气净化过程故障监测[J]. 化工学报, 2018, 69(10): 4292-4301. |
[7] | 耿雪梅, 李宏光. 考虑人因指标的过程报警阈值自适应优化方法[J]. 化工学报, 2018, 69(S1): 95-101. |
[8] | 高学金, 黄梦丹, 齐咏生, 王普. PDPSO优化多阶段AR-PCA间歇过程监测方法[J]. 化工学报, 2018, 69(9): 3914-3923. |
[9] | 董顺, 李益国, 孙栓柱, 刘西陲, 沈炯. 基于状态空间主成分分析网络的故障检测方法[J]. 化工学报, 2018, 69(8): 3528-3536. |
[10] | 冯立伟, 张成, 李元, 谢彦红. 基于双近邻标准化和PCA的多阶段过程故障检测[J]. 化工学报, 2018, 69(7): 3159-3166. |
[11] | 邓晓刚, 邓佳伟, 曹玉苹, 王磊. 基于双层局部KPCA的非线性过程微小故障检测方法[J]. 化工学报, 2018, 69(7): 3092-3100. |
[12] | 邱禹, 刘乙奇, 吴菁, 黄道平. 基于深层神经网络的多输出自适应软测量建模[J]. 化工学报, 2018, 69(7): 3101-3113. |
[13] | 马建, 邓晓刚, 王磊. 基于深度集成支持向量机的工业过程软测量方法[J]. 化工学报, 2018, 69(3): 1121-1128. |
[14] | 赵帅, 宋冰, 侍洪波. 基于加权互信息主元分析算法的质量相关故障检测[J]. 化工学报, 2018, 69(3): 962-973. |
[15] | 孙栓柱, 董顺, 江叶峰, 周挺, 李益国. 基于最小充分统计量模式分析的故障检测方法[J]. 化工学报, 2018, 69(3): 1228-1237. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 221
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 376
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||