化工学报 ›› 2019, Vol. 70 ›› Issue (2): 736-749.DOI: 10.11949/j.issn.0438-1157.20180842
收稿日期:
2018-07-21
修回日期:
2018-11-22
出版日期:
2019-02-05
发布日期:
2019-02-05
通讯作者:
熊伟丽
作者简介:
<named-content content-type="corresp-name">顾炳斌</named-content>(1995—),男,硕士研究生,<email>18861822198@163.com</email>|熊伟丽(1978—),女,博士,教授,<email>greenpre@163.com</email>
基金资助:
Received:
2018-07-21
Revised:
2018-11-22
Online:
2019-02-05
Published:
2019-02-05
Contact:
Weili XIONG
摘要:
传统的监控方法往往只利用传感器观测值信息进行过程的故障监测,而忽略了原始数据中包含的其他有效信息。为此,提出一种基于多块信息提取的PCA故障监测算法。首先,对过程变量的累计误差和变化率信息进行定义,从而能够从数据中提取新的特征信息,并基于每种特征将过程划分为3个子块;然后,利用PCA方法对每个子块进行建模与监测,通过贝叶斯方法对监测结果进行融合;最后,提出一种基于加权贡献图的故障诊断方法,分离出引发故障的源变量。通过数值例子与田纳西-伊斯曼(TE)过程监控中的应用证明了所提方法的有效性与可行性。
中图分类号:
顾炳斌, 熊伟丽. 基于多块信息提取的PCA故障诊断方法[J]. 化工学报, 2019, 70(2): 736-749.
Bingbin GU, Weili XIONG. Fault diagnosis based on PCA method with multi-block information extraction[J]. CIESC Journal, 2019, 70(2): 736-749.
子块编号 | 训练数据集 | 测试样本 |
---|---|---|
1 | ||
2 | ||
3 |
表1 子块划分结果
Table 1 Sub-block division results
子块编号 | 训练数据集 | 测试样本 |
---|---|---|
1 | ||
2 | ||
3 |
故障编号 | 子块1 | 子块2 | 子块3 | BIC | ||||
---|---|---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | |
1 | 0.88 | 0.13 | 1.25 | 0.38 | 89.74 | 83.23 | 0.88 | 0.25 |
2 | 1.63 | 4.26 | 1.63 | 2 | 97.87 | 97.37 | 1.4 | 2.38 |
3 | 99.12 | 97.37 | 97.75 | 96.25 | 98.25 | 96.62 | 99.25 | 96.25 |
4 | 79.1 | 0 | 22.4 | 0 | 98.5 | 97.87 | 36.67 | 0 |
5 | 75.72 | 79.1 | 66.46 | 0.13 | 91.86 | 87.98 | 70.46 | 0 |
6 | 0.88 | 0 | 1.13 | 0.13 | 97.12 | 84.61 | 1 | 0 |
7 | 0 | 0 | 0.13 | 0.13 | 79.6 | 76.97 | 0 | 0 |
8 | 3.13 | 16.4 | 3.38 | 2.13 | 59.95 | 34.67 | 3.38 | 1.38 |
9 | 98.25 | 98.25 | 98.12 | 93.99 | 97.62 | 96.5 | 99.12 | 94.99 |
10 | 70.09 | 74.22 | 59.2 | 62.33 | 92.37 | 84.73 | 62.33 | 60.08 |
11 | 59.32 | 25.16 | 33.54 | 4.38 | 93.49 | 93.37 | 31.66 | 3.49 |
12 | 1.63 | 10.51 | 2.38 | 0.88 | 26.78 | 20.65 | 1.13 | 1 |
13 | 6.38 | 4.76 | 5.88 | 4.63 | 45.56 | 28.29 | 5.88 | 4.41 |
14 | 0.75 | 0 | 74.47 | 10.76 | 0.13 | 1.38 | 0 | 0 |
15 | 98.62 | 97 | 96.37 | 96.37 | 98.37 | 97 | 98.25 | 95.12 |
16 | 86.61 | 72.59 | 79.72 | 62.33 | 88.36 | 84.61 | 78.6 | 60.45 |
17 | 23.53 | 4.63 | 11.39 | 2.63 | 89.11 | 57.57 | 12.39 | 2.33 |
18 | 10.76 | 9.89 | 10.51 | 9.51 | 83.73 | 78.35 | 11.01 | 9.41 |
19 | 88.99 | 87.61 | 88.86 | 88.11 | 74.72 | 45.06 | 75.34 | 44.18 |
20 | 68.34 | 50.31 | 66.96 | 32.79 | 86.98 | 89.61 | 64.58 | 36.47 |
21 | 60.83 | 52.82 | 54.69 | 31.16 | 98.62 | 98.75 | 58.32 | 34.67 |
平均故障漏报率 | 44.50 | 37.38 | 41.72 | 28.26 | 80.42 | 73.10 | 38.65 | 26.12 |
平均故障误报率 | 0.52 | 1.32 | 0.8 | 3.35 | 1.38 | 2.67 | 0.37 | 3.07 |
表2 TE过程各故障漏报率
Table 2 Missing alarm rates of TE process/%
故障编号 | 子块1 | 子块2 | 子块3 | BIC | ||||
---|---|---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | |
1 | 0.88 | 0.13 | 1.25 | 0.38 | 89.74 | 83.23 | 0.88 | 0.25 |
2 | 1.63 | 4.26 | 1.63 | 2 | 97.87 | 97.37 | 1.4 | 2.38 |
3 | 99.12 | 97.37 | 97.75 | 96.25 | 98.25 | 96.62 | 99.25 | 96.25 |
4 | 79.1 | 0 | 22.4 | 0 | 98.5 | 97.87 | 36.67 | 0 |
5 | 75.72 | 79.1 | 66.46 | 0.13 | 91.86 | 87.98 | 70.46 | 0 |
6 | 0.88 | 0 | 1.13 | 0.13 | 97.12 | 84.61 | 1 | 0 |
7 | 0 | 0 | 0.13 | 0.13 | 79.6 | 76.97 | 0 | 0 |
8 | 3.13 | 16.4 | 3.38 | 2.13 | 59.95 | 34.67 | 3.38 | 1.38 |
9 | 98.25 | 98.25 | 98.12 | 93.99 | 97.62 | 96.5 | 99.12 | 94.99 |
10 | 70.09 | 74.22 | 59.2 | 62.33 | 92.37 | 84.73 | 62.33 | 60.08 |
11 | 59.32 | 25.16 | 33.54 | 4.38 | 93.49 | 93.37 | 31.66 | 3.49 |
12 | 1.63 | 10.51 | 2.38 | 0.88 | 26.78 | 20.65 | 1.13 | 1 |
13 | 6.38 | 4.76 | 5.88 | 4.63 | 45.56 | 28.29 | 5.88 | 4.41 |
14 | 0.75 | 0 | 74.47 | 10.76 | 0.13 | 1.38 | 0 | 0 |
15 | 98.62 | 97 | 96.37 | 96.37 | 98.37 | 97 | 98.25 | 95.12 |
16 | 86.61 | 72.59 | 79.72 | 62.33 | 88.36 | 84.61 | 78.6 | 60.45 |
17 | 23.53 | 4.63 | 11.39 | 2.63 | 89.11 | 57.57 | 12.39 | 2.33 |
18 | 10.76 | 9.89 | 10.51 | 9.51 | 83.73 | 78.35 | 11.01 | 9.41 |
19 | 88.99 | 87.61 | 88.86 | 88.11 | 74.72 | 45.06 | 75.34 | 44.18 |
20 | 68.34 | 50.31 | 66.96 | 32.79 | 86.98 | 89.61 | 64.58 | 36.47 |
21 | 60.83 | 52.82 | 54.69 | 31.16 | 98.62 | 98.75 | 58.32 | 34.67 |
平均故障漏报率 | 44.50 | 37.38 | 41.72 | 28.26 | 80.42 | 73.10 | 38.65 | 26.12 |
平均故障误报率 | 0.52 | 1.32 | 0.8 | 3.35 | 1.38 | 2.67 | 0.37 | 3.07 |
故障编号 | PCA | DPCA | MSMBPCA | FBPCA | MBI-PCA |
---|---|---|---|---|---|
T2 or SPE | |||||
0 | 0.022 | 0.026 | 0.0214 | 0.06 | 0.0144 |
1 | 0 | 0 | 0 | 0 | 0 |
2 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 |
3 | 0.97 | 0.94 | — | 0.88 | 0.96 |
4 | 0 | 0 | 0 | 0 | 0 |
5 | 0.75 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 |
8 | 0.03 | 0.02 | 0.03 | 0.01 | 0.01 |
9 | 0.98 | 0.93 | — | 0.91 | 0.95 |
10 | 0.7 | 0.44 | 0.18 | 0.11 | 0.6 |
11 | 0.25 | 0.22 | 0.3 | 0.19 | 0.03 |
12 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 |
13 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
14 | 0 | 0 | 0 | 0 | 0 |
15 | 0.97 | 0.93 | — | 0.78 | 0.95 |
16 | 0.73 | 0.52 | 0.15 | 0.1 | 0.30 |
17 | 0.05 | 0.03 | 0.13 | 0.03 | 0.03 |
18 | 0.10 | 0.09 | 0.1 | 0.1 | 0.09 |
19 | 0.88 | 0.8 | 0.48 | 0.3 | 0.44 |
20 | 0.50 | 0.27 | 0.33 | 0.1 | 0.36 |
21 | 0.53 | 0.44 | 0.46 | 0.33 | 0.35 |
表3 几种现有的多块监测方法性能比较
Table 3 Comparison of some state of multi-block monitoring methods
故障编号 | PCA | DPCA | MSMBPCA | FBPCA | MBI-PCA |
---|---|---|---|---|---|
T2 or SPE | |||||
0 | 0.022 | 0.026 | 0.0214 | 0.06 | 0.0144 |
1 | 0 | 0 | 0 | 0 | 0 |
2 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 |
3 | 0.97 | 0.94 | — | 0.88 | 0.96 |
4 | 0 | 0 | 0 | 0 | 0 |
5 | 0.75 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 |
8 | 0.03 | 0.02 | 0.03 | 0.01 | 0.01 |
9 | 0.98 | 0.93 | — | 0.91 | 0.95 |
10 | 0.7 | 0.44 | 0.18 | 0.11 | 0.6 |
11 | 0.25 | 0.22 | 0.3 | 0.19 | 0.03 |
12 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 |
13 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
14 | 0 | 0 | 0 | 0 | 0 |
15 | 0.97 | 0.93 | — | 0.78 | 0.95 |
16 | 0.73 | 0.52 | 0.15 | 0.1 | 0.30 |
17 | 0.05 | 0.03 | 0.13 | 0.03 | 0.03 |
18 | 0.10 | 0.09 | 0.1 | 0.1 | 0.09 |
19 | 0.88 | 0.8 | 0.48 | 0.3 | 0.44 |
20 | 0.50 | 0.27 | 0.33 | 0.1 | 0.36 |
21 | 0.53 | 0.44 | 0.46 | 0.33 | 0.35 |
1 | QinS J. Statistical process monitoring: basics and beyond [J]. Journal of Chemometrics, 2003, 17(8/9): 480-502 |
2 | GeZ Q, SongZ H, GaoF R. Review of recent research on data-based process monitoring [J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3543-3562. |
3 | GeZ Q, SongZ H. Multivariate Statistical Process Control [M]. London: Springer, 2013: 169-182. |
4 | 韩敏, 张占奎. 基于改进核主成分分析的故障检测与诊断方法[J]. 化工学报, 2015, 66(6): 2139-2149. |
HanM, ZhangZ K. Fault detection and diagnosis method based on modified kernel principal component analysis [J]. CIESC Journal, 2015, 66(6): 2139-2149. | |
5 | 李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1): 1-9. |
LiH, XiaoD Y. Survey on data driven fault diagnosis methods [J]. Control and Decision, 2011, 26(1): 1-9. | |
6 | LeeJ M, YooC K, SangW C, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1): 223-234. |
7 | GeZ Q, SongZ H. Process monitoring based on independent component analysis−principal component analysis (ICA− PCA) and similarity factors [J]. Industrial & Engineering Chemistry Research, 2007, 46(7): 2054-2063. |
8 | LiG, QinS J, ZhouD H. A new method of dynamic latent-variable modeling for process monitoring [J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6438-6445. |
9 | 谭帅, 王福利, 常玉清, 等. 基于差分分段PCA的多模态过程故障监测[J]. 自动化学报, 2010, 36(11): 1626-1636. |
TanS, WangF L, ChangY Q, et al. Fault detection of multi-mode process using segmented PCA based on differential transform [J]. Acta Automatica Sinica, 2010, 36(11): 1626-1636. | |
10 | 王健, 冯健, 韩志艳. 基于流形学习的局部保持 PCA 算法在故障检测中的应用[J]. 控制与决策, 2013, 28(5): 683-687. |
WangJ, FengJ, HanZ Y. Locally preserving PCA method based on manifold learning and its application in fault detection[J]. Control and Decision, 2013, 28(5): 683-687. | |
11 | ZhaoC, GaoF. Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring[J]. Chemometrics & Intelligent Laboratory Systems, 2014, 133: 1-16. |
12 | MacgregorJ F, JaeckleC, KiparissidesC, et al. Process monitoring and diagnosis by multiblock PLS methods [J]. AIChE Journal, 1994, 40(5): 826-838. |
13 | WesterhuisJ A, KourtiT, MacGregorJ F. Analysis of multiblock and hierarchical PCA and PLS models [J]. Journal of Chemometrics, 1998, 12(5): 301-321. |
14 | GeZ Q, ZhangM, SongZ H. Nonlinear process monitoring based on linear subspace and Bayesian inference [J]. Journal of Process Control, 2010, 20(5): 676-688. |
15 | GeZ Q, SongZ H. Distributed PCA model for plant-wide process monitoring [J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 1947-1957. |
16 | WangB, YanX F, JiangQ C, et al. Generalized Dice's coefficient-based multi-block principal component analysis with Bayesian inference for plant-wide process monitoring[J]. Journal of Chemometrics, 2015, 29(3): 165-178. |
17 | HuangJ, YanX F. Dynamic process fault detection and diagnosis based on dynamic principal component analysis, dynamic independent component analysis and Bayesian inference [J]. Chemometrics & Intelligent Laboratory Systems, 2015, 148: 115-127. |
18 | JiangQ C, YanX F, HuangB. Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference [J]. IEEE Transactions on Industrial Electronics, 2015, 63(1): 377-386. |
19 | GeZ Q, ChenJ. Plant-wide industrial process monitoring: a distributed modeling framework[J]. IEEE Transactions on Industrial Informatics, 2017, 12(1): 310-321. |
20 | 叶昊, 徐海鹏. 基于重构的传感器故障诊断贡献分析[J]. 清华大学学报(自然科学版), 2012, 52(1): 36-39. |
YeH, XuH P. Reconstruction-based contribution analysis for sensor fault diagnostics[J]. Journal of Tsinghua University Science and Technology, 2012, 52(1): 36-39. | |
21 | 彭开香, 马亮, 张凯. 复杂工业过程质量相关的故障检测与诊断技术综述[J]. 自动化学报, 2017, 43(3): 349-365. |
PengK X, MaL, ZhangK. Review of quality-related fault detection and diagnosis techniques for complex industrial processes[J]. Acta Automatica Sinica, 2017, 43(3): 349-365. | |
22 | LauC K, GhoshK, HussainM A, et al. Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS[J]. Chemometrics & Intelligent Laboratory Systems, 2013, 120(2): 1-14. |
23 | ZhouD H, LiG, QinS J. Total projection to latent structures for process monitoring[J]. AIChE Journal, 2010, 56(1): 168-178. |
24 | 王海清, 余世明. 基于故障诊断性能优化的主元个数选取方法[J]. 化工学报, 2004, 55(2): 214-219. |
WangH Q, YuS M. Selection of the number of principal components based on the fault diagnosing performance analysis[J]. CIESC Journal, 2004, 55(2): 214-219. | |
25 | 苏林, 尚朝轩, 连光耀, 等. 基于故障检测率的主元个数确定方法[J]. 计算机测量与控制, 2011, 19(8): 1857-1860. |
SuL, ShangC X, LianG Y, et al. Selection of number of principal components based on fault detection accuracy[J]. Computer Measurement & Control, 2011, 19(8): 1857-1860. | |
26 | ShenY, DingS X, HaghaniA, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. Journal of Process Control, 2012, 22(9): 1567-1581. |
27 | RussellE L, ChiangL H , BraatzR D . Tennessee Eastman Process[M]// Fault Detection and Diagnosis in Industrial Systems. London: Springer, 2001: 103-112. |
28 | 衷路生, 何东, 龚锦红, 等. 基于分布式ICA-PCA模型的工业过程故障监测[J]. 化工学报, 2015, 66(11): 4546-4554. |
ZhongL S, HED, GongJ H, et al. Fault monitoring of industrial process based on distributed ICA-PCA model[J]. CIESC Journal, 2015, 66(11): 4546-4554. | |
29 | 王海清, 蒋宁. 自适应Kernel学习网络在TE过程组分仪建模中的应用[J]. 化工学报, 2007, 58(2): 425-430. |
WangH Q, JiangN. Adaptive Kernel learning networks with application to modeling of analyzer in TE process[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(2): 425-430. | |
30 | JiangQ C, YanX F. Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multiblock KPCA[J]. Journal of Process Control, 2015, 32: 38-50. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[5] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[6] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[7] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[8] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[9] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[10] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[11] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[12] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[13] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[14] | 王光, 单发顺, 钱禹丞, 焦建芳. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978. |
[15] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||