1 |
Jia H, Lian P, Leng X, et al. Mechanism studies on the application of the mixed cationic/anionic surfactant systems to enhance oil recovery[J]. Fuel, 2019, 258: 116156.
|
2 |
Ruzicka M C, Vecer M M, Orvalho S, et al. Effect of surfactant on homogeneous regime stability in bubble column[J]. Chemical Engineering Science, 2008, 63(4): 951-967.
|
3 |
Wu Y, Fang S, Zhang K, et al. Stability mechanism of nitrogen foam in porous media with silica nanoparticles modified by cationic surfactants[J]. Langmuir, 2018, 34(27): 8015-8023.
|
4 |
Zhao M, Wang R, Dai C, et al. Adsorption behaviour of surfactant-nanoparticles at the gas-liquid interface: influence of the alkane chain length[J]. Chemical Engineering Science, 2019, 206: 203-211.
|
5 |
Petkova B, Tcholakova S, Chenkova M, et al. Foamability of aqueous solutions: role of surfactant type and concentration[J]. Advances in Colloid and Interface Science, 2020, 276: 102084.
|
6 |
Ramezani M, Legg M J, Haghighat A, et al. Experimental investigation of the effect of ethyl alcohol surfactant on oxygen mass transfer and bubble size distribution in an air-water multiphase Taylor-Couette vortex bioreactor[J]. Chemical Engineering Journal, 2017, 319: 288-296.
|
7 |
AlYousef Z A, Almobarky M A, Schechter D S. The effect of nanoparticle aggregation on surfactant foam stability[J]. Journal of Colloid and Interface Science, 2018, 511: 365-373.
|
8 |
Bera B, Carrier O, Backus E H G, et al. Counteracting interfacial energetics for wetting of hydrophobic surfaces in the presence of surfactants[J]. Langmuir, 2018, 34(41): 12344-12349.
|
9 |
Tanaka S, Kastens S, Fujioka S, et al. Mass transfer from freely rising microbubbles in aqueous solutions of surfactant or salt[J]. Chemical Engineering Journal, 2020, 387: 121246.
|
10 |
张华海, 王铁峰. CFD-PBM耦合模型模拟气液鼓泡床的通用性研究[J]. 化工学报, 2019, 70(2): 487-495.
|
|
Zhang H H, Wang T F. Generality of CFD-PBM coupled model for simulations of gas-liquid bubble column[J]. CIESC Journal, 2019, 70(2): 487-495.
|
11 |
Craig V S J, Ninham B W, Pashley R M. Effect of electrolytes on bubble coalescence[J]. Nature, 1993, 364(6435): 317-319.
|
12 |
Bhakta A, Ruckenstein E. Decay of standing foams: drainage, coalescence and collapse[J]. Advances in Colloid and Interface Science, 1997, 70: 1-124.
|
13 |
Guo K Y, Wang T F, Yang G Y, et al. Distinctly different bubble behaviors in a bubble column with pure liquids and alcohol solutions[J]. Journal of Chemical Technology and Biotechnology, 2017, 92(2): 432-441.
|
14 |
Horn R G, Del Castillo L A, Ohnishi S. Coalescence map for bubbles in surfactant-free aqueous electrolyte solutions[J]. Advances in Colloid and Interface Science, 2011, 168(1): 85-92.
|
15 |
Langevin D. Bubble coalescence in pure liquids and in surfactant solutions[J]. Current Opinion in Colloid & Interface Science, 2015, 20(2): 92-97.
|
16 |
Ghosh P. Coalescence of bubbles in liquid[J]. Bubble Science, Engineering & Technology, 2009, 1(1/2): 75-87.
|
17 |
Samanta S, Ghosh P. Coalescence of bubbles and stability of foams in Brij surfactant systems[J]. Industrial & Engineering Chemistry Research, 2011, 50(8): 4484-4493.
|
18 |
Liu B, Manica R, Liu Q, et al. Coalescence of bubbles with mobile interfaces in water[J]. Physical Review Letters, 2019, 122(19): 194501.
|
19 |
Langevin D. Dynamics of surfactant layers[J]. Current Opinion in Colloid & Interface Science, 1998, 3(6): 600-607.
|
20 |
Vakarelski I U, Manica R, Li E Q, et al. Coalescence dynamics of mobile and immobile fluid interfaces[J]. Langmuir, 2018, 34(5): 2096-2108.
|
21 |
Wang W, Li K, Ma M Y, et al. Review and perspectives of AFM application on the study of deformable drop/bubble interactions[J]. Advances in Colloid and Interface Science, 2015, 225: 88-97.
|
22 |
Liu B, Manica R, Liu Q, et al. Coalescence or bounce? How surfactant adsorption in milliseconds affects bubble collision[J]. The Journal of Physical Chemistry Letters, 2019, 10(18): 5662-5666.
|
23 |
Zhang X, Manica R, Tang Y, et al. Bubbles with tunable mobility of surfaces in ethanol-NaCl aqueous solutions[J]. Journal of Colloid and Interface Science, 2019, 556: 345-351.
|
24 |
Andrew S P S. Frothing in two-component liquid mixtures[C]// Proceedings of the International Symposium on Distillation.1960:73-78.
|
25 |
Syeda S R, Afacan A, Chuang K T. Prediction of gas hold-up in a bubble column filled with pure and binary liquids[J]. The Canadian Journal of Chemical Engineering, 2002, 80(1): 44-50.
|
26 |
Sagert N H, Quinn M J, Cribbs S C, et al. Bubble coalescence in aqueous solutions of n-alcohols[M]//Foams. New York: Academic Press, 1976: 147-162.
|
27 |
Dean J A. Langes Handbook of Chemistry[M]. New York, London: McGraw-Hill, Inc., 1999.
|
28 |
Luo H, Svendsen H F. Modeling and simulation of binary approach by energy conservation analysis[J]. Chemical Engineering Communications, 1996, 145(1): 145-153.
|
29 |
Liao Y, Lucas D. A literature review on mechanisms and models for the coalescence process of fluid particles[J]. Chemical Engineering Science, 2010, 65(10): 2851-2864.
|
30 |
Meissner H P, Michaels A S. Surface tensions of pure liquids and liquid mixtures[J]. Industrial & Engineering Chemistry, 1949, 41(12): 2782-2787.
|
31 |
Connors K A, Wright J L. Dependence of surface-tension on composition of binary aqueous organic solutions[J]. Analytical Chemistry, 1989, 61(3): 194-198.
|
32 |
Shah Y T, Joseph S, Smith D N, et al. On the behavior of the gas phase in a bubble column with ethanol-water mixtures[J]. Industrial & Engineering Chemistry Process Design and Development, 1985, 24(4): 1140-1148.
|