化工学报 ›› 2021, Vol. 72 ›› Issue (3): 1364-1371.DOI: 10.11949/0438-1157.20200719
毛桃嫣1(),邹敏婷1,郑成1,2(),曾昭文1,伍旭贤1,肖润辉1,彭思玉1
收稿日期:
2020-06-09
修回日期:
2020-10-25
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
郑成
作者简介:
毛桃嫣(1986—),女,博士,讲师,基金资助:
MAO Taoyan1(),ZOU Minting1,ZHENG Cheng1,2(),ZENG Zhaowen1,WU Xuxian1,XIAO Runhui1,PENG Siyu1
Received:
2020-06-09
Revised:
2020-10-25
Online:
2021-03-05
Published:
2021-03-05
Contact:
ZHENG Cheng
摘要:
微波辅助化学已成为备受关注的研究课题,但微波反应动力学模型缺乏系统的研究严重阻碍了微波在化学工业化上的应用,微波化学反应在化学工程化的放大设计及应用缺乏基础依据。以偶氮二异丁脒盐酸盐(AIBA)分解反应为例,通过选择合适的溶剂调整其复配比例,得到一系列具有不同沸点的混合溶剂作为反应介质,使反应在混合溶剂沸点下进行,以保证反应过程中微波的持续作用来研究微波反应动力学。从微波作用下动量传递、热量传递和质量传递的影响因素进行考虑,选择了对微波化学反应必须和充分的因素,包括微波功率密度 p、黏度 μ、密度ρ、反应物的浓度 CA、温度 T、热导率 λ、损耗角正切δ 和微波辐射频率f。采用量纲分析方法,通过模型分析建立了微波分解反应动力学模型。通过大量的实验数据进行拟合,回归出特定反应的模型参数。该模型估算值与实验值的误差较小,相关性较高,具有一定的预测能力可解决微波反应过程放大的基础性问题,有望用于指导微波工业化生产。
中图分类号:
毛桃嫣, 邹敏婷, 郑成, 曾昭文, 伍旭贤, 肖润辉, 彭思玉. 微波化学反应的无量纲准数动力学模型研究:以偶氮二异丁脒盐酸盐(AIBA)分解反应为例[J]. 化工学报, 2021, 72(3): 1364-1371.
MAO Taoyan, ZOU Minting, ZHENG Cheng, ZENG Zhaowen, WU Xuxian, XIAO Runhui, PENG Siyu. A kinetics model of dimensionless criterion for microwave chemical reaction:a case study of the decomposition reaction of AIBA hydrochloride[J]. CIESC Journal, 2021, 72(3): 1364-1371.
物理参数 | 符号 | 单位 | 量纲 |
---|---|---|---|
反应速率 | mol·m-3·s-1 | NT-1L-1 | |
功率密度 | p | W·m-3 | ML-1T-3 |
黏度 | μ | Pa·s | ML-1T-1 |
密度 | ρ | kg·m-3 | ML-3 |
反应物浓度 | CA | mol·m-3 | NL-3 |
温度 | T | K | Θ |
损耗角正切 | 1 | ||
微波频率 | f | Hz | T-1 |
热导率 | λ | W·m-1·K-1 | MLT-3Θ-1 |
表1 物理参数的量纲
Table 1 Dimension of various parameters
物理参数 | 符号 | 单位 | 量纲 |
---|---|---|---|
反应速率 | mol·m-3·s-1 | NT-1L-1 | |
功率密度 | p | W·m-3 | ML-1T-3 |
黏度 | μ | Pa·s | ML-1T-1 |
密度 | ρ | kg·m-3 | ML-3 |
反应物浓度 | CA | mol·m-3 | NL-3 |
温度 | T | K | Θ |
损耗角正切 | 1 | ||
微波频率 | f | Hz | T-1 |
热导率 | λ | W·m-1·K-1 | MLT-3Θ-1 |
水-乙醇体积比 | 沸点/K | 密度/ (kg·m-3) | 黏度/ (Pa·s) | 热导率/ (W·m-1·K-1) |
---|---|---|---|---|
1.5∶8.5(500 W) | 366 | 950.4 | 0.310×10-3 | 0.603 |
2∶8(500 W) | 363.8 | 947.8 | 0.319×10-3 | 0.594 |
2.5∶7.5(500 W) | 362.1 | 944.3 | 0.327×10-3 | 0.583 |
3∶7(500 W) | 360.7 | 940.1 | 0.343×10-3 | 0.572 |
3.5∶6.5(500 W) | 358.4 | 936.2 | 0.345×10-3 | 0.560 |
1.5∶8.5(400 W) | 366.2 | 950.2 | 0.309×10-3 | 0.603 |
2∶8(400 W) | 362.7 | 948.9 | 0.323×10-3 | 0.594 |
2.5∶7.5(400 W) | 361.1 | 945.3 | 0.331×10-3 | 0.584 |
3∶7(400 W) | 359.3 | 941.5 | 0.349×10-3 | 0.572 |
3.5∶6.5(400 W) | 357 | 937.6 | 0.351×10-3 | 0.560 |
1.5∶8.5(300 W) | 366 | 950.4 | 0.310×10-3 | 0.603 |
2∶8(300 W) | 362.1 | 949.5 | 0.325×10-3 | 0.594 |
2.5∶7.5(300 W) | 360.7 | 945.7 | 0.332×10-3 | 0.584 |
3∶7(300 W) | 358.4 | 942.4 | 0.348×10-3 | 0.572 |
3.5∶6.5(300 W) | 357.3 | 937.3 | 0.350×10-3 | 0.560 |
1.5∶8.5(200 W) | 366.2 | 950.2 | 0.309×10-3 | 0.603 |
2∶8(200 W) | 362.5 | 949.1 | 0.324×10-3 | 0.594 |
2.5∶7.5(200 W) | 360.4 | 946.0 | 0.333×10-3 | 0.584 |
3∶7(200 W) | 358.2 | 942.6 | 0.355×10-3 | 0.572 |
3.5∶6.5(200 W) | 355.5 | 939.1 | 0.357×10-3 | 0.560 |
表2 不同复配比例下溶液的理化性质
Table 2 Physical and chemical properties of solutions with different compound proportions
水-乙醇体积比 | 沸点/K | 密度/ (kg·m-3) | 黏度/ (Pa·s) | 热导率/ (W·m-1·K-1) |
---|---|---|---|---|
1.5∶8.5(500 W) | 366 | 950.4 | 0.310×10-3 | 0.603 |
2∶8(500 W) | 363.8 | 947.8 | 0.319×10-3 | 0.594 |
2.5∶7.5(500 W) | 362.1 | 944.3 | 0.327×10-3 | 0.583 |
3∶7(500 W) | 360.7 | 940.1 | 0.343×10-3 | 0.572 |
3.5∶6.5(500 W) | 358.4 | 936.2 | 0.345×10-3 | 0.560 |
1.5∶8.5(400 W) | 366.2 | 950.2 | 0.309×10-3 | 0.603 |
2∶8(400 W) | 362.7 | 948.9 | 0.323×10-3 | 0.594 |
2.5∶7.5(400 W) | 361.1 | 945.3 | 0.331×10-3 | 0.584 |
3∶7(400 W) | 359.3 | 941.5 | 0.349×10-3 | 0.572 |
3.5∶6.5(400 W) | 357 | 937.6 | 0.351×10-3 | 0.560 |
1.5∶8.5(300 W) | 366 | 950.4 | 0.310×10-3 | 0.603 |
2∶8(300 W) | 362.1 | 949.5 | 0.325×10-3 | 0.594 |
2.5∶7.5(300 W) | 360.7 | 945.7 | 0.332×10-3 | 0.584 |
3∶7(300 W) | 358.4 | 942.4 | 0.348×10-3 | 0.572 |
3.5∶6.5(300 W) | 357.3 | 937.3 | 0.350×10-3 | 0.560 |
1.5∶8.5(200 W) | 366.2 | 950.2 | 0.309×10-3 | 0.603 |
2∶8(200 W) | 362.5 | 949.1 | 0.324×10-3 | 0.594 |
2.5∶7.5(200 W) | 360.4 | 946.0 | 0.333×10-3 | 0.584 |
3∶7(200 W) | 358.2 | 942.6 | 0.355×10-3 | 0.572 |
3.5∶6.5(200 W) | 355.5 | 939.1 | 0.357×10-3 | 0.560 |
1 | 魏渊, 郑成, 毛桃嫣, 等. 山嵛酸双酯基有机硅季铵盐的微波合成工艺及性能[J]. 化工进展, 2018, 37(8): 3169-3178. |
Wei Y, Zheng C, Mao T Y, et al. Microwave synthesis process and properties of behenic acid diester-based silicone quaternary ammonium salt [J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3169-3178. | |
2 | Liu S, Mei L, Liang X, et al. Anchoring Fe3O4 nanoparticles on carbon nanotubes for microwave-induced catalytic degradation of antibiotics[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29467-29475. |
3 | Chen W, Zhang A, Gu Z, et al. Enhanced degradation of refractory organics in concentrated landfill leachate by FeO/H2O2 coupled with microwave irradiation[J]. Chemical Engineering Journal, 2018, 354: 680-691. |
4 | Ao W, Fu J, Mao X, et al. Microwave assisted preparation of activated carbon from biomass: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 958-979. |
5 | Gao X, Li X, Zhang J, et al. Influence of a microwave irradiation field on vapor–liquid equilibrium[J]. Chemical Engineering Science, 2013, 90: 213-220. |
6 | 赵振宇, 李洪, 李鑫钢, 等. 基于介电性质差异的微波诱导强化蒸馏分离[J]. 化工进展, 2020, 39(6): 2275-2283. |
Zhao Z N, Li H, Li X G, et al. Microwave-induced enhancement of distillation separation based on dielectric properties difference[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2275-2283. | |
7 | 凌慧, 郑成, 毛桃嫣, 等. 响应面法优化微波辅助合成中碳链甘油三酯工艺 [J]. 化工学报, 2016, 67: 231-244. |
Ling H, Zheng C, Mao T Y, et al. Optimization of microwave-assisted synthesis of medium-chain triacylalycerols using response surface methodology[J]. CIESC Journal, 2016, 67: 231-244. | |
8 | Hillman F, Zimmerman J M, Paek S-M, et al. Rapid microwave-assisted synthesis of hybrid zeolitic–imidazolate frameworks with mixed metals and mixed linkers[J]. Journal of Materials Chemistry A, 2017, 5(13): 6090-6099. |
9 | Xin Z, Li L, Zhang X, et al. Microwave-assisted hydrothermal synthesis of chrysanthemum-like Ag/ZnO prismatic nanorods and their photocatalytic properties with multiple modes for dye degradation and hydrogen production[J]. RSC Advances, 2018, 8(11): 6027-6038. |
10 | Makhado E, Pandey S, Ramontja J. Microwave assisted synthesis of xanthan gum-cl-poly (acrylic acid) based-reduced graphene oxide hydrogel composite for adsorption of methylene blue and methyl violet from aqueous solution[J]. International Journal of Biological Macromolecules, 2018, 119: 255-269. |
11 | Le T, Ju S, Koppala S, et al. Kinetics study of microwave enhanced reactions between diasporic bauxite and alkali solution[J]. Journal of Alloys and Compounds, 2018, 749: 652-663. |
12 | 雷向欣, 李俊, 沈瀛坪. 微波对乙酸甲酯水解的作用及反应动力学研究[J]. 化学反应工程与工艺, 2002, 18(2): 97-102. |
Lei X X, Li J, Shen Y P. Study on the hydrolysis of methyl acetate under the influence of microwave and the kinetics[J]. Chemical Reaction Engineering and Technology, 2002, 18(2): 97-102. | |
13 | 熊俊, 潘晶莹, 吕秀阳. 微波作用下苄苯醚催化转移氢解反应动力学[J]. 化工学报, 2012, 63(5): 1437-1442. |
Xiong J, Pan J Y, Lü X Y. A kinetics study on microwave-assisted catalytic hydrogenolysis of benzyl phenyl ether[J]. CIESC Journal, 2012, 63(5): 1437-1442. | |
14 | 丁志伟, 丁辉, 侯钧. 微波作用下的乙酸乙酯合成反应动力学[J]. 化学反应工程与工艺, 2012, 28(5): 458-463. |
Ding Z W, Ding H, Hou J. Kinetics of catalytic synthesis of ethyl acetate under microwave irradiation[J]. Chemical Reaction Engineering and Technology, 2012, 28(5): 458-463. | |
15 | Sturm G S J, Verweij M D, van Gerven T, et al. On the effect of resonant microwave fields on temperature distribution in time and space[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3800-3811. |
16 | Patil N G, Benaskar F, Meuldijk J, et al. Microwave assisted flow synthesis: coupling of electromagnetic and hydrodynamic phenomena[J]. AIChE Journal, 2014, 60(11): 3824-3832. |
17 | Zhu J, Kuznetsov A V, Sandeep K P. Mathematical modeling of continuous flow microwave heating of liquids (effects of dielectric properties and design parameters)[J]. International Journal of Thermal Sciences, 2007, 46(4): 328-341. |
18 | Wu Y, Hong T, Tang Z, et al. Dynamic model for a uniform microwave-assisted continuous flow process of ethyl acetate production[J]. Entropy, 2018, 20(4): 241. |
19 | de Bruyn M, Budarin V L, Sturm G S J, et al. Subtle microwave-induced overheating effects in an industrial demethylation reaction and their direct use in the development of an innovative microwave reactor[J]. J. Am. Chem. Soc., 2017, 139(15): 5431-5436. |
20 | Prosetya H, Datta A. Batch microwave heating of liquids: an experimental study[J]. Journal of Microwave Power and Electromagnetic Energy, 1991, 26(4): 215-226. |
21 | Gao X, Shu D, Li X, et al. Improved film evaporator for mechanistic understanding of microwave-induced separation process[J]. Frontiers of Chemical Science and Engineering, 2019, 13(4): 759-771. |
22 | Smith A D, Lester E H, Thurecht K J, et al. Temperature dependence of the dielectric properties of 2, 2′-azobis(2-methyl-butyronitrile) (ambn)[J]. Industrial & Engineering Chemistry Research, 2010, 49(6): 3011-3014. |
23 | Liu J, Jia G, Lu Z. Dielectric properties of pyridine derivative-water clusters: molecular dynamics simulation[J]. Journal of Molecular Liquids, 2017, 241: 984-991. |
24 | Ergan B T, Bayramoğlu M. The effects of microwave power and dielectric properties on the microwave-assisted decomposition kinetics of AIBN in n-butanol[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(1): 299-304. |
25 | Li H, Cui J, Liu J, et al. Mechanism of the effects of microwave irradiation on the relative volatility of binary mixtures[J]. AIChE Journal, 2017, 63(4): 1328-1337. |
26 | 汤建伟, 许秀成, 张宝林, 等. 微波作用磷矿分解反应动力学研究[J]. 化工矿物与加工, 2006, 35(4): 10-13. |
Tang J W, Xu X C, Zhang B L, et al. Study on the kinetics of dissolving reaction of phosphate ore under microwave-induced enhancement[J]. Industrial Minerals & Processing, 2006, 35(4): 10-13. | |
27 | 汤建伟, 张宝林, 范秀山, 等. 微波作用下酸解磷矿动力学模型研究[J]. 化学反应工程与工艺, 2007, 23(2): 114-119. |
Tang J W, Zhang B L, Fan X S, et al. Kinetic model of acid dissolving reaction of phosphate rock by microwave induced enhancement[J]. Chemical Reaction Engineering and Technology, 2007, 23(2): 114-119. | |
28 | 杨晓庆. 微波与化学反应体系相互作用过程中的特殊效应研究[D]. 成都: 四川大学, 2006. |
Yang X Q. Study on specific effect in the interaction between microwave and chemical reaction[D]. Chengdu: Sichuan University, 2006. | |
29 | 郑成, 毛桃嫣, 卫云路, 等. 沸腾状态下十二烷基甲基二羟乙基溴化铵微波合成的动力学研究[J]. 精细化工, 2009, 26(2): 131-135. |
Zheng C, Mao T Y, Wei Y L, et al. Study on the kinetics of the synthesis of dodecymethyldihydroxyethyl ammonium Bromide[J]. Fine Chemicals, 2009, 26(2): 131-135. | |
30 | Dudley G B, Richert R, Stiegman A E. On the existence of and mechanism for microwave-specific reaction rate enhancement[J]. Chem. Sci., 2015, 6(4): 2144-2152. |
31 | Dudley G B, Stiegman A E. Changing perspectives on the strategic use of microwave heating in organic synthesis[J]. Chem. Rec., 2018, 18(3): 381-389. |
32 | Costa C, Santos V H S, Araujo P H H, et al. Rapid decomposition of a cationic azo-initiator under microwave irradiation[J]. Journal of Applied Polymer Science, 2010, 118(3): 1421-1429. |
33 | 潘鹤林, 宗原, 黄婕. 《化工原理》课程中的量纲分析法[J]. 教育教学论坛, 2019, (2): 165-167. |
Pan H L, Zong Y, Huang J. Dimensional analysis means in the principles of “Chemical Engineering” [J]. Education Teaching Forum, 2019, (2): 165-167. | |
34 | 邵友元. 对量纲分析法与π定理的理解与应用[J]. 东莞理工学院学报, 2010, 17(3): 106-109. |
Shao Y Y. Comprehension and application for dimensional analysis and rule π[J]. Journal of Dongguan University of Technology, 2010, 17(3): 106-109. | |
35 | 刘宝平. 量纲分析法在物理建模与计算分析中的应用研究[J]. 太原学院学报(自然科学版), 2019, 37(1): 31-35. |
Liu B P. Application research of dimensional analysis method in physical modeling and computational analysis [J]. Journal of Taiyuan University(Natural Science Edition), 2019, 37(1): 31-35. | |
36 | 吴学勇. 量纲分析方法应用研究[J]. 甘肃高师学报, 2000, 5(2): 40-43. |
Wu X Y. Application research of dimensional analysis method [J]. Journal of Gansu Normal University, 2000, 5(2): 40-43. |
[1] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[2] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[3] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[4] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[5] | 郑杰元, 张先伟, 万金涛, 范宏. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
[6] | 周桓, 张梦丽, 郝晴, 吴思, 李杰, 徐存兵. 硫酸镁型光卤石转化钾盐镁矾的过程机制与动态规律[J]. 化工学报, 2022, 73(9): 3841-3850. |
[7] | 马语峻, 刘向军. 多孔陶瓷膜烟气水分回收理论与模型研究[J]. 化工学报, 2022, 73(9): 4103-4112. |
[8] | 宋谦石, 王潇伟, 张威, 汪小憨, 李浩文, 乔瑜. 无机元素对生物质焦炭-CO2气化反应性的催化/抑制作用研究及模型构建[J]. 化工学报, 2022, 73(11): 5240-5250. |
[9] | 张牧星, 张小松, 丁烨, 宋翼. 氧化石墨烯膜间距对电渗析空气除湿特性影响的分子动力学研究[J]. 化工学报, 2021, 72(S1): 63-69. |
[10] | 李梦钖, 高明, 左启蓉, 章立新, 赵玉刚. 过冷壁面液滴中四丁基溴化铵水合物生成的可视化研究[J]. 化工学报, 2021, 72(4): 2094-2101. |
[11] | 张梦飞, 张玲, 李晓闯, 祖韵秋, 黄明, 石宪章, 刘春太. 厚壁橡胶制品非等温硫化过程模拟与实验研究[J]. 化工学报, 2021, 72(4): 2065-2075. |
[12] | 李超凡, 温玉娟, 曹楠, 孙东, 宋晓明, 杨悦锁. 耐低温对硝基苯酚降解菌的降解动力学研究[J]. 化工学报, 2021, 72(3): 1692-1701. |
[13] | 杨诗, 蔡阳, 李长平, 李雪辉. 磷钨酸负载锆基金属有机骨架PTA@MOF-808的制备及其吸附脱硫性能[J]. 化工学报, 2021, 72(3): 1722-1731. |
[14] | 王曰杰, 李玲玲, 何春宏. 炼油废催化剂生物淋滤脱金属研究进展[J]. 化工学报, 2021, 72(2): 901-912. |
[15] | 吉远辉, 陈俏, 翁靖云. 聚合物辅料对阿司匹林结晶动力学影响机制的非平衡热力学建模及预测[J]. 化工学报, 2021, 72(1): 508-520. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||