化工学报 ›› 2023, Vol. 74 ›› Issue (6): 2416-2426.DOI: 10.11949/0438-1157.20230168
收稿日期:
2023-02-27
修回日期:
2023-04-21
出版日期:
2023-06-05
发布日期:
2023-07-27
通讯作者:
李涛
作者简介:
周继鹏(1990—),男,硕士,助理研究员,zhoujp.sshy@sinopec.com
Jipeng ZHOU1(), Wenjun HE1, Tao LI2()
Received:
2023-02-27
Revised:
2023-04-21
Online:
2023-06-05
Published:
2023-07-27
Contact:
Tao LI
摘要:
以乙烯催化氧化制环氧乙烷体系为研究对象,采用有限元算法对异形催化剂失活动力学方程与反应-传质-传热方程组同时求解,模型收敛性和计算结果准确性均很好。催化剂颗粒经过16个月反应后,主副反应活性系数均下降明显,且副反应失活速率大于主反应。随着催化剂失活,第一类失活内扩散效率因子随时间增加而上升,第二类失活内扩散效率因子随时间增加先下降然后小幅度上升。通过定量计算表明催化剂内扩散阻力的存在能“延缓”由于失活导致的表观反应速率下降。对于存在强内扩散限制的此反应体系,表观失活速率只有不存在内扩散影响的失活速率的50.8%。内扩散对失活动力学方程实验测量有很大影响,必须区分本征失活动力学和宏观失活动力学。当催化剂活性降低到一定程度,可以提高反应温度以保证反应在高速率区间进行。应用此模型能指导反应器设计和失活状态下反应器的操作参数优化。
中图分类号:
周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426.
Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts[J]. CIESC Journal, 2023, 74(6): 2416-2426.
1 | Amin A, Epling W, Croiset E. Reaction and deactivation rates of methane catalytic cracking over nickel[J]. Industrial & Engineering Chemistry Research, 2011, 50(22): 12460-12470. |
2 | Sengar A, van Santen R A, Steur E, et al. Deactivation kinetics of solid acid catalyst with laterally interacting protons[J]. ACS Catalysis, 2018, 8(10): 9016-9033. |
3 | Wang A Y, Wang J H, Sheti S, et al. A deactivation mechanism study of phosphorus-poisoned diesel oxidation catalysts: model and supplier catalysts[J]. Catalysis Science & Technology, 2020, 10(16): 5602-5617. |
4 | Iranshahi D, Pourazadi E, Paymooni K, et al. Modeling of an axial flow, spherical packed-bed reactor for naphtha reforming process in the presence of the catalyst deactivation[J]. International Journal of Hydrogen Energy, 2010, 35(23): 12784-12799. |
5 | 齐国祯, 谢在库, 陈庆龄. SAPO-34催化剂上甲醇制烯烃反 应——催化反应失活动力学[J]. 化学反应工程与工艺, 2013, 29(1): 1-6. |
Qi G Z, Xie Z K, Chen Q L. Methanol to olefins (MTO) reaction over SAPO-34 catalyst—deactivation kinetics of catalytic reaction[J]. Chemical Reaction Engineering and Technology, 2013, 29(1): 1-6. | |
6 | Haghlesan A, Alizadeh R, Fatehifar E. Modeling of ethylbenzene dehydrogenation catalyst deactivation on an industrial scale[J]. Petroleum Science and Technology, 2016, 34(6): 499-504. |
7 | Chen Q Q, Lua A C. Kinetic reaction and deactivation studies on thermocatalytic decomposition of methane by electroless nickel plating catalyst[J]. Chemical Engineering Journal, 2020, 389: 124366. |
8 | Tian Y, Abed A M, Aljeboree A M, et al. Green process of fuel production under porous γ-Al2O3 catalyst: study of activation and deactivation kinetic for MTD process[J]. Arabian Journal of Chemistry, 2022, 15(12): 104287. |
9 | 陆铭, 朱子彬, 陈庆龄, 等. AB-97分子筛催化剂上苯与乙烯烷基化反应(Ⅲ): 失活动力学及失活特征[J]. 石油化工, 2002, 31(5): 329-333. |
Lu M, Zhu Z B, Chen Q L, et al. Study on ethylbenzene synthesis over AB-97 zeolite (Ⅲ): Deactivation kinetics[J]. Petrochemical Technology, 2002, 31(5): 329-333. | |
10 | 刘颖, 韩崇仁, 方维平, 等. 催化剂积炭失活宏观反应动力学的研究[J]. 催化学报, 2004, 25(2): 107-109. |
Liu Y, Han C R, Fang W P, et al. Study on reaction kinetics of coke deposition and deactivation of catalysts[J]. Chinese Journal of Catalysis, 2004, 25(2): 107-109. | |
11 | Ostrovskii N M. General equation for linear mechanisms of catalyst deactivation[J]. Chemical Engineering Journal, 2006, 120: 73-82. |
12 | 董青青, 于万金, 程党国, 等. 3-甲基吡啶氯氟化反应积炭失活催化剂的烧炭动力学模型[J]. 高校化学工程学报, 2017, 31(4): 834-840. |
Dong Q Q, Yu W J, Cheng D G, et al. Kinetic models for coke combustion of deactivated CrO-Al from 3-picoline chlorofluorination reaction[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(4): 834-840. | |
13 | Wang H M, You C F. Photocatalytic oxidation of SO2 on TiO2 and the catalyst deactivation: a kinetic study[J]. Chemical Engineering Journal, 2018, 350: 268-277. |
14 | Gromotka Z, Yablonsky G, Ostrovskii N, et al. Three-factor kinetic equation of catalyst deactivation[J]. Entropy, 2021, 23(7): 818. |
15 | Krishnaswamy S, Kittrell J R. Diffusional influences on deactivation rates[J]. AIChE Journal, 1981, 27(1): 120-125. |
16 | 李丰, 支玉珍, 吴指南. 内扩散对苯和乙烯气相烃化反应失活动力学的影响[J]. 石油化工, 1989, 18(1): 1-8. |
Li F, Zhi Y Z, Wu Z N. Effect of pore internal diffusion on deactivating kinetics of gas phase alkylation of benzene with ethylene over AF-5 zeolite catalyst[J]. Petrochemical Technology, 1989, 18(1): 1-8. | |
17 | 崔瑞利, 赵愉生, 于双林, 等. 渣油加氢脱残炭催化剂的失活研究[J]. 石油化工, 2013, 42(4): 411-414. |
Cui R L, Zhao Y S, Yu S L, et al. Deactivation of catalyst for removing residue carbon in hydrotreating residual oil[J]. Petrochemical Technology, 2013, 42(4): 411-414. | |
18 | Abbas H F, Daud W M A W. Hydrogen production by thermocatalytic decomposition of methane using a fixed bed activated carbon in a pilot scale unit: apparent kinetic, deactivation and diffusional limitation studies[J]. International Journal of Hydrogen Energy, 2010, 35(22): 12268-12276. |
19 | Gayubo A G, Valle B, Aramburu B, et al. Kinetic model considering catalyst deactivation for the steam reforming of bio-oil over Ni/La2O3-αAl2O3 [J]. Chemical Engineering Journal, 2018, 332: 192-204. |
20 | 韩坤鹏, 戴立顺, 聂红. 固定床渣油加氢催化剂运转初期失活规律研究进展[J]. 化工进展, 2017, 36(S1): 211-220. |
Han K P, Dai L S, Nie H. Research progress on deactivation of fixed bed residue hydrogenating catalysts at the initial stage of operation[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 211-220. | |
21 | Liu X L, Zhang Q F, Ye G H, et al. Deactivation and regeneration of Claus catalyst particles unraveled by pore network model[J]. Chemical Engineering Science, 2020, 211: 115305. |
22 | Wang Y, Zhang Q F, Liu X L, et al. Probing deactivation by coking in catalyst pellets for dry reforming of methane using a pore network model[J]. Chinese Journal of Chemical Engineering, 2023, 55: 293-303. |
23 | Zhao L W, Liu G L. Dynamic coupling of reactor and heat exchanger network considering catalyst deactivation[J]. Energy, 2022, 260: 125161. |
24 | Goh K B, Li Z, Chen X, et al. Reaction-diffusion model to quantify and visualize mass transfer and deactivation within core-shell polymeric microreactors[J]. Journal of Colloid and Interface Science, 2022, 608: 1999-2008. |
25 | 甘霖, 王弘轼, 朱炳辰, 等. 环氧乙烷合成银催化剂宏观动力学及失活分析[J]. 化工学报, 2001, 52(11): 969-973. |
Gan L, Wang H S, Zhu B C, et al. Global kinetics and deactivation of silver catalyst for ethylene oxide synthesis[J]. Journal of Chemical Industry and Engineering(China), 2001, 52(11): 969-973. | |
26 | 张杰, 李涛. 甲烷化梅花状催化剂CFD计算及改进[J]. 化工学报, 2018, 69(7): 2985-2992. |
Zhang J, Li T. Application of CFD to improve calculated process of methanation over plum-shaped catalyst[J]. CIESC Journal, 2018, 69(7): 2985-2992. | |
27 | 应景涛, 李涛. 费托合成蛋壳型催化剂活性组分厚度的模拟计算[J]. 化工学报, 2019, 70(9): 3404-3411. |
Ying J T, Li T. Simulation of active component thickness of egg-shell catalyst for F-T synthesis[J]. CIESC Journal, 2019, 70(9): 3404-3411. | |
28 | 蒋文超, 张海涛, 马宏方, 等. 合成氨催化剂颗粒的多组分反应-扩散模型计算[J]. 华东理工大学学报(自然科学版), 2022, 48(6): 723-729. |
Jiang W C, Zhang H T, Ma H F, et al. Multicomponent reaction-diffusion model calculation of catalyst particles for ammonia synthesis[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2022, 48(6): 723-729. | |
29 | Liu B, Chai Y M, Wang Y J, et al. A simple technique for preparation of presulfided eggshell MoS2/Al2O3 catalysts and kinetics approach for highly selective hydrodesulfurization of FCC gasoline[J]. Applied Catalysis A: General, 2010, 388: 248-255. |
30 | 王庆祺, 张国泰, 吴指南. 多孔催化剂颗粒的内扩散效应对伴有失活的二级反应动力学的影响[J]. 化工学报, 1992, 43(1): 82-90. |
Wang Q Q, Zhang G T, Wu Z N. Effect of intraparticle diffusion on catalyst deactivation kinetics for second order reactions[J]. Journal of Chemical Industry and Engineering(China), 1992, 43(1): 82-90. |
[1] | 周继鹏, 房鼎业, 李涛. 外齿轮形颗粒催化剂上乙烯催化氧化的反应工程计算[J]. 化工学报, 2016, 67(7): 2808-2814. |
[2] | 陈杰, 贾旭, 于慧敏, 罗晖, 沈忠耀. 耦合末端盐桥与定点突变的重组腈水合酶催化动力学[J]. 化工学报, 2014, 65(7): 2821-2828. |
[3] | 黄琦;王弘轼;凌泽济. 环氧乙烷合成反应器温度-时间优化策略 [J]. CIESC Journal, 2005, 56(5): 870-874. |
[4] | 李振花, 许根慧, 王保伟, 马新宾, 杜葩. H2对CO气相催化偶联制草酸二乙酯反应的失活机理 [J]. 化工学报, 2003, 54(1): 59-63. |
[5] | 应卫勇,房鼎业,姚佩芳,杜智美,朱炳辰. 甲醇合成铜基催化剂硫化氢中毒研究(Ⅰ)——硫化氢中毒本征失活动力学 [J]. CIESC Journal, 1992, 43(2): 133-138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||