化工学报 ›› 2023, Vol. 74 ›› Issue (8): 3353-3365.DOI: 10.11949/0438-1157.20230499

• 催化、动力学与反应器 • 上一篇    下一篇

基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究

曾如宾1,2(), 沈中杰1,2(), 梁钦锋1,2, 许建良1,2, 代正华1,2,3, 刘海峰1,2   

  1. 1.华东理工大学国家能源煤气化技术研发中心,上海 200237
    2.华东理工大学上海市煤气化工程技术研究中心,上海 200237
    3.新疆大学化工学院,新疆 乌鲁木齐 830046
  • 收稿日期:2023-05-23 修回日期:2023-07-25 出版日期:2023-08-25 发布日期:2023-10-18
  • 通讯作者: 沈中杰
  • 作者简介:曾如宾(1999—),男,硕士研究生,y82210127@mail.ecust.edu.cn
  • 基金资助:
    上海市浦江人才项目(21PJ1402300)

Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation

Rubin ZENG1,2(), Zhongjie SHEN1,2(), Qinfeng LIANG1,2, Jianliang XU1,2, Zhenghua DAI1,2,3, Haifeng LIU1,2   

  1. 1.National Energy Coal Gasification Technology R&D Center, East China University of Science and Technology, Shanghai 200237, China
    2.Shanghai Coal Gasification Engineering Technology Research Center, East China University of Science and Technology, Shanghai 200237, China
    3.School of Chemical Engineering, Xinjiang University, Urumqi 830046, Xinjiang, China
  • Received:2023-05-23 Revised:2023-07-25 Online:2023-08-25 Published:2023-10-18
  • Contact: Zhongjie SHEN

摘要:

氧化铁是化工、冶金和能源等领域重要的原料,其在高温下的烧结性对产品性能至关重要。通过分子动力学模拟(MDS)研究了不同温度、粒径与空位缺陷浓度条件下Fe2O3纳米颗粒的烧结机制。结果表明,Fe2O3纳米颗粒粒径由3 nm增加至5 nm,烧结后收缩率由25.0%降低至10.8%,相对颈部宽度由96.6%降低至49.5%。当温度由900 K升高至1300 K,烧结过程原子扩散系数由1.758×10-3 nm2/ps增至4.303×10-3 nm2/ps,增大1.45倍。高温下(1300 K)原子迁移使颗粒部分结构由HCP和BCC结构转变为非晶结构,非晶原子比例为66.7%。含10.0%初始空位缺陷浓度纳米颗粒烧结过程的扩散活化能相比完美晶体(0空位浓度)降低约63.5%,原子迁移性及烧结致密化程度增强。研究结果对氧化铁颗粒高温热处理工艺优化具有指导意义。

关键词: Fe2O3纳米颗粒, 空位缺陷, 烧结机制, 原子迁移, 分子动力学模拟

Abstract:

Iron oxide is an important raw material in the fields of chemical industry, metallurgy and energy, and its sinterability at high temperature is crucial to product performance. In this study, the sintering mechanism of Fe2O3 nanoparticles was investigated by molecular dynamics simulation (MDS) at different temperatures, particle sizes and vacancy defect concentrations. The results showed that when the particle size of Fe2O3 nanoparticles increased from 3 nm to 5 nm, the post-sintering shrinkage decreased from 25.0% to 10.8%, and the relative neck width decreased from 96.6% to 49.5%. When the temperature was increased from 900 K to 1300 K, the atomic diffusion coefficient for the sintering process increased from 1.758 × 10-3 nm2/ps to 4.303 × 10-3 nm2/ps, which was increased to 2.45 times. Atomic migration at high temperature (1300 K) transformed some of the particle structures from HCP and BCC structures to amorphous structures with 66.7% of amorphous atoms. The diffusion activation energy of the sintering process of nanoparticles containing 10.0% initial vacancy defect concentration was reduced by about 63.5% compared with that of perfect crystals (0 vacancy concentration), and the atom mobility and sintering densification were enhanced. The above results are of great significance for the optimization of the high-temperature heat treatment process of iron oxide particles.

Key words: Fe2O3 nanoparticles, vacancy defects, sintering mechanism, atomic migration, molecular dynamics simulation

中图分类号: