化工学报 ›› 2023, Vol. 74 ›› Issue (11): 4445-4465.DOI: 10.11949/0438-1157.20231049
收稿日期:
2023-10-09
修回日期:
2023-11-09
出版日期:
2023-11-25
发布日期:
2024-01-22
通讯作者:
叶凌箭
基金资助:
Received:
2023-10-09
Revised:
2023-11-09
Online:
2023-11-25
Published:
2024-01-22
Contact:
Lingjian YE
摘要:
自优化控制(SOC)是一种通过选择被控变量实现化工过程实时优化的控制系统设计方法,具有控制结构简单、优化效果好等优点,近年来得到了快速发展。详细阐述了SOC的基本工作原理及其在过程控制系统中的定位与作用,对其发展历程和研究现状进行了系统性的总结,主要包括:被控变量求解方法、变量筛选快速算法、可变约束集问题、间歇过程SOC方法和混合实时优化策略等内容。最后,全面回顾了现阶段SOC在化工过程中的应用案例,并从理论和实践角度对其未来发展方向进行展望。
中图分类号:
叶凌箭. 化工过程的自优化控制:原理、发展与应用展望[J]. 化工学报, 2023, 74(11): 4445-4465.
Lingjian YE. Self-optimizing control for chemical processes: principle, developments and outlooks[J]. CIESC Journal, 2023, 74(11): 4445-4465.
所需过程模型 y = g ( u, d ) | 单变量 | 线性被控变量 | 非线性被控变量(全局) | ||
---|---|---|---|---|---|
局部法 | 全局法 | 局部法 | 全局法 | ||
线性模型 | MSV准则[ | — | 局部精确法[ 特征值分解法[ 零空间和扩展零空间法[ | — | — |
非线性模型 | — | 穷举法[ | — | 优化 cs[ NCO回归法[ 全局近似法[ 混沌多项式法[ sigma-point法[ 广义SOC法[ | 消元法(限于多项式系统)[ NCO回归法[ 广义SOC法[ |
表1 连续过程的被控变量求解方法
Table 1 Methods of selecting controlled variables for continuous processes
所需过程模型 y = g ( u, d ) | 单变量 | 线性被控变量 | 非线性被控变量(全局) | ||
---|---|---|---|---|---|
局部法 | 全局法 | 局部法 | 全局法 | ||
线性模型 | MSV准则[ | — | 局部精确法[ 特征值分解法[ 零空间和扩展零空间法[ | — | — |
非线性模型 | — | 穷举法[ | — | 优化 cs[ NCO回归法[ 全局近似法[ 混沌多项式法[ sigma-point法[ 广义SOC法[ | 消元法(限于多项式系统)[ NCO回归法[ 广义SOC法[ |
化工过程 | 自由度① (可变约束) | ny | 被控变量 求解方法 | 变量筛选算法 | 备注 | 文献 |
---|---|---|---|---|---|---|
蒸发器 | 2(1) | 10 | Ⅱ, Ⅲa, Ⅲb | BF | 常用基准仿真平台 | [ |
反应-分离-循环过程 | 1 | >9 | Ⅰ, Ⅲa | BF | — | [ |
TE过程 | 3 | 41 | Ⅰ, Ⅲb | BF, BAB | 只研究了工况一 | [ |
HDA过程 | 2 | 140 | Ⅰ, Ⅲb | BF, BAB | — | [ |
金氰化浸出过程 | 4 | 16 | Ⅲb | BF,BAB | — | [ |
催化裂化装置 | 1 | 8 | Ⅲb | BF | — | [ |
废气排放过程 | 2(1) | 13+43② | Ⅰ, Ⅲb | BF, BAB | 鲁棒设定值法 | [ |
二氧化碳捕集过程 | 2(1) | 39 | Ⅰ | BF, BAB | 切换策略 | [ |
SOFC装置 | 1 | 13 | Ⅰ, Ⅲb | BF | — | [ |
SOFC+熔融碳酸盐燃料电池 | 4(2) | 17 | Ⅰ | BF | 切换策略 | [ |
蔗汁压榨制糖过程 | 41 | 234 | Ⅱ | GA | 解决传感器放置问题 | [ |
蒸汽压缩制冷循环系统 | 3 | 11 | Ⅰ, Ⅱ | BF | 部分实验验证 | [ |
氨合成反应过程 | 3 | 6 | Ⅱ | BF | SOC+ESC双层控制 | [ |
污水处理过程 | 5 | 28 | Ⅱ | BAB | — | [ |
排水管道系统 | 3 | 24 | Ⅱ | BF | — | [ |
Kaibel精馏塔 | 4 | 71 | Ⅱ | MIQP | — | [ |
高压空分装置 | 6 | 23 | Ⅰ | BF | — | [ |
LNG液化装置 | 2 | 49 | Ⅰ, Ⅱ | BAB | — | [ |
富氧燃烧系统 | 1 | 2 | Ⅰ | BF | — | [ |
间歇精馏塔 | 20~40③ | >100 | Ⅱ | 未考虑 | — | [ |
表2 SOC在化工过程中的应用案例
Table 2 Applications of SOC in chemical processes
化工过程 | 自由度① (可变约束) | ny | 被控变量 求解方法 | 变量筛选算法 | 备注 | 文献 |
---|---|---|---|---|---|---|
蒸发器 | 2(1) | 10 | Ⅱ, Ⅲa, Ⅲb | BF | 常用基准仿真平台 | [ |
反应-分离-循环过程 | 1 | >9 | Ⅰ, Ⅲa | BF | — | [ |
TE过程 | 3 | 41 | Ⅰ, Ⅲb | BF, BAB | 只研究了工况一 | [ |
HDA过程 | 2 | 140 | Ⅰ, Ⅲb | BF, BAB | — | [ |
金氰化浸出过程 | 4 | 16 | Ⅲb | BF,BAB | — | [ |
催化裂化装置 | 1 | 8 | Ⅲb | BF | — | [ |
废气排放过程 | 2(1) | 13+43② | Ⅰ, Ⅲb | BF, BAB | 鲁棒设定值法 | [ |
二氧化碳捕集过程 | 2(1) | 39 | Ⅰ | BF, BAB | 切换策略 | [ |
SOFC装置 | 1 | 13 | Ⅰ, Ⅲb | BF | — | [ |
SOFC+熔融碳酸盐燃料电池 | 4(2) | 17 | Ⅰ | BF | 切换策略 | [ |
蔗汁压榨制糖过程 | 41 | 234 | Ⅱ | GA | 解决传感器放置问题 | [ |
蒸汽压缩制冷循环系统 | 3 | 11 | Ⅰ, Ⅱ | BF | 部分实验验证 | [ |
氨合成反应过程 | 3 | 6 | Ⅱ | BF | SOC+ESC双层控制 | [ |
污水处理过程 | 5 | 28 | Ⅱ | BAB | — | [ |
排水管道系统 | 3 | 24 | Ⅱ | BF | — | [ |
Kaibel精馏塔 | 4 | 71 | Ⅱ | MIQP | — | [ |
高压空分装置 | 6 | 23 | Ⅰ | BF | — | [ |
LNG液化装置 | 2 | 49 | Ⅰ, Ⅱ | BAB | — | [ |
富氧燃烧系统 | 1 | 2 | Ⅰ | BF | — | [ |
间歇精馏塔 | 20~40③ | >100 | Ⅱ | 未考虑 | — | [ |
119 | de Araujo A C B, Gallani S, Mulas M, et al. Sensitivity analysis of optimal operation of an activated sludge process model for economic controlled variable selection[J]. Industrial & Engineering Chemistry Research, 2013, 52(29): 9908-9921. |
120 | Francisco M, Skogestad S, Vega P. Model predictive control for the self-optimized operation in wastewater treatment plants: analysis of dynamic issues[J]. Computers & Chemical Engineering, 2015, 82: 259-272. |
121 | Mauricio-Iglesias M, Montero-Castro I, Mollerup A L, et al. A generic methodology for the optimisation of sewer systems using stochastic programming and self-optimizing control[J]. Journal of Environmental Management, 2015, 155: 193-203. |
122 | Roh K, Lee J H. Control structure selection for the elevated-pressure air separation unit in an IGCC power plant: self-optimizing control structure for economical operation[J]. Industrial & Engineering Chemistry Research, 2014, 53(18): 7479-7488. |
123 | Verheyleweghen A, Jäschke J. Self-optimizing control of an LNG liquefaction plant[J]. Journal of Process Control, 2019, 74: 63-75. |
124 | Jin B, Yao W X, Liu K L, et al. Self-optimizing control and safety assessment to achieve economic and safe operation for oxy-fuel combustion boiler island systems[J]. Applied Energy, 2022, 323: 119397. |
1 | Skogestad S. Plantwide control: the search for the self-optimizing control structure[J]. Journal of Process Control, 2000, 10(5): 487-507. |
2 | Morari M, Arkun Y, Stephanopoulos G. Studies in the synthesis of control structures for chemical processes(part Ⅰ): Formulation of the problem. Process decomposition and the classification of the control tasks. Analysis of the optimizing control structures[J]. AIChE Journal, 1980, 26: 220-232. |
3 | 袁璞, 孙德祥, 左信, 等. 催化裂化装置裂化反应深度的实时优化控制方法: 97100141.3[P]. 1997. |
Yuan P, Sun D X, Zuo X, et al. Real-time optimization control method for cracking reaction depth of catalytic cracking unit: 97100141.3[P]. 1997. | |
4 | 黄德先. 化工过程先进控制的发展过程、国内特殊问题的解决和展望[J]. 化工自动化及仪表, 2023, 50(5): 597-610. |
Huang D X. Development of advanced control in chemical process and solutions to special domestic problems and its prospect[J]. Control and Instruments in Chemical Industry, 2023, 50(5): 597-610. | |
5 | Chen C Y, Joseph B. On-line optimization using a two-phase approach: an application study[J]. Industrial & Engineering Chemistry Research, 1987, 26(9): 1924-1930. |
6 | Marlin T E, Hrymak A N. Real-time operations optimization of continuous processes[C]//Proceedings of the AIChE Symposium Series. New York, NY: American Institute of Chemical Engineers, 1971. |
7 | Jäschke J, Cao Y, Kariwala V. Self-optimizing control—a survey[J]. Annual Reviews in Control, 2017, 43: 199-223. |
8 | Engell S. Feedback control for optimal process operation[J]. Journal of Process Control, 2007, 17(3): 203-219. |
9 | 柴天佑. 生产制造全流程优化控制对控制与优化理论方法的挑战[J]. 自动化学报, 2009, 35(6): 641-649. |
Chai T Y. Challenges of optimal control for plant-wide production processes in terms of control and optimization theories[J]. Acta Automatica Sinica, 2009, 35(6): 641-649. | |
10 | Chachuat B, Srinivasan B, Bonvin D. Adaptation strategies for real-time optimization[J]. Computers & Chemical Engineering, 2009, 33(10): 1557-1567. |
11 | Jiang T W, Chen B Z, He X R, et al. Application of steady-state detection method based on wavelet transform[J]. Computers & Chemical Engineering, 2003, 27(4): 569-578. |
12 | Wang Y L, Sun K N, Yuan X F, et al. A novel sliding window PCA-IPF based steady-state detection framework and its industrial application[J]. IEEE Access, 2018, 6: 20995-21004. |
13 | Xie S, Yang C H, Yuan X F, et al. A novel robust data reconciliation method for industrial processes[J]. Control Engineering Practice, 2019, 83: 203-212. |
14 | Biegler L T, Zavala V M. Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide dynamic optimization[J]. Computers & Chemical Engineering, 2009, 33(3): 575-582. |
15 | Jäschke J, Skogestad S. NCO tracking and self-optimizing control in the context of real-time optimization[J]. Journal of Process Control, 2011, 21(10): 1407-1416. |
16 | Skogestad S. Control structure design for complete chemical plants[J]. Computers & Chemical Engineering, 2004, 28(1/2): 219-234. |
17 | Govatsmark M S, Skogestad S. Selection of controlled variables and robust setpoints[J]. Industrial & Engineering Chemistry Research, 2005, 44(7): 2207-2217. |
18 | Larsson T, Hestetun K, Hovland E, et al. Self-optimizing control of a large-scale plant: the Tennessee Eastman process[J]. Industrial & Engineering Chemistry Research, 2001, 40(22): 4889-4901. |
19 | Larsson T, Govatsmark M S, Skogestad S, et al. Control structure selection for reactor, separator, and recycle processes[J]. Industrial & Engineering Chemistry Research, 2003, 42(6): 1225-1234. |
20 | de Araújo A C B, Govatsmark M, Skogestad S. Application of plantwide control to the HDA process (Ⅰ): Steady-state optimization and self-optimizing control[J]. Control Engineering Practice, 2007, 15(10): 1222-1237. |
21 | Halvorsen I J, Skogestad S, Morud J C, et al. Optimal selection of controlled variables[J]. Industrial & Engineering Chemistry Research, 2003, 42(14): 3273-3284. |
22 | Alstad V, Skogestad S, Hori E S. Optimal measurement combinations as controlled variables[J]. Journal of Process Control, 2009, 19(1): 138-148. |
23 | Kariwala V. Optimal measurement combination for local self-optimizing control[J]. Industrial & Engineering Chemistry Research, 2007, 46(11): 3629-3634. |
24 | Kariwala V, Cao Y, Janardhanan S. Local self-optimizing control with average loss minimization[J]. Industrial & Engineering Chemistry Research, 2008, 47(4): 1150-1158. |
25 | Alstad V, Skogestad S. Null space method for selecting optimal measurement combinations as controlled variables[J]. Industrial & Engineering Chemistry Research, 2007, 46(3): 846-853. |
26 | Schultz E S, Trierweiler J O, Farenzena M. The importance of nominal operating point selection in self-optimizing control[J]. Industrial & Engineering Chemistry Research, 2016, 55(27): 7381-7393. |
27 | Ye L J, Cao Y, Li Y D, et al. Approximating necessary conditions of optimality as controlled variables[J]. Industrial & Engineering Chemistry Research, 2013, 52(2): 798-808. |
28 | Ye L J, Cao Y, Yuan X F. Global approximation of self-optimizing controlled variables with average loss minimization[J]. Industrial & Engineering Chemistry Research, 2015, 54(48): 12040-12053. |
29 | Ye L J, Cao Y, Yang S H. Global self-optimizing control with active-set changes: a polynomial chaos approach[J]. Computers & Chemical Engineering, 2022, 159: 107662. |
30 | Ma X, Guan H W, Ye L J. Sigma-point and stochastic gradient descent approach to solving global self-optimizing controlled variables[J]. Korean Journal of Chemical Engineering, 2023, 40(7): 1563-1574. |
31 | Ye L J, Cao Y, He Y C, et al. Generalized global self-optimizing control for chemical processes (Ⅰ): The existence of perfect controlled variables and numerical design methods[J]. Industrial & Engineering Chemistry Research, 2023, 62(37): 15051-15069. |
32 | Jäschke J, Skogestad S. Optimal controlled variables for polynomial systems[J]. Journal of Process Control, 2012, 22(1): 167-179. |
33 | 叶凌箭, 钟伟红, 宋执环. 基于分段线性化法的改进自主优化控制[J]. 自动化学报, 2013, 39(8): 1231-1237. |
Ye L J, Zhong W H, Song Z H. Improved self-optimizing control method based on piece-wise linearization[J]. Acta Automatica Sinica, 2013, 39(8): 1231-1237. | |
34 | Ye L J, Cao Y, Ma X S, et al. A novel hierarchical control structure with controlled variable adaptation[J]. Industrial & Engineering Chemistry Research, 2014, 53(38): 14695-14711. |
35 | Ye L J, Cao Y, Yuan X F, et al. Retrofit self-optimizing control: a step forward toward real implementation[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4662-4670. |
36 | Ye L J, Miao A M, Zhang H W. Real-time optimization of gold cyanidation leaching process in a two-layer control architecture integrating self-optimizing control and modifier adaptation[J]. Industrial & Engineering Chemistry Research, 2017, 56(14): 4002-4016. |
37 | 叶凌箭, 关宏伟. 金氰化浸出过程的自优化控制[J]. 控制与决策, 2017, 32(3): 481-486. |
Ye L J, Guan H W. Self-optimizing control of gold cyanidation leaching process[J]. Control and Decision, 2017, 32(3): 481-486. | |
38 | Guan H W, Ye L J, Shen F F, et al. Economic operation of a fluid catalytic cracking process using self-optimizing control and reconfiguration[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96: 104-113. |
39 | Shen F F, Ye L J, Guan H W, et al. Enhanced control structure design for an industrial off-gas system: simple reconfigurations benefit the economy[J]. Heliyon, 2023, 9(1): e12934. |
40 | Krantz S G, Parks H R. The Implicit Function Theorem: History, Theory, and Applications[M]. New York: Springer, 2013. |
41 | Beyer H G, Sendhoff B. Robust optimization—a comprehensive survey[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(33): 3190-3218. |
42 | Gabrel V, Murat C, Thiele A. Recent advances in robust optimization: an overview[J]. European Journal of Operational Research, 2014, 235(3): 471-483. |
43 | Cao Y, Rossiter D, Owens D H. Globally optimal control structure selection using branch and bound method[J]. IFAC Proceedings Volumes, 1998, 31(11): 185-190. |
44 | Kariwala V, Skogestad S. Branch and bound methods for control structure design[C]//16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering. Amsterdam: Elsevier, 2006: 1371-1376. |
45 | Cao Y, Kariwala V. Bidirectional branch and bound for controlled variable selection[J]. Computers & Chemical Engineering, 2008, 32(10): 2306-2319. |
46 | Kariwala V, Cao Y. Bidirectional branch and bound for controlled variable selection(Part Ⅱ): Exact local method for self-optimizing control[J]. Computers & Chemical Engineering, 2009, 33(8): 1402-1412. |
47 | Kariwala V, Cao Y. Bidirectional branch and bound for controlled variable selection(Part Ⅲ): Local average loss minimization[J]. IEEE Transactions on Industrial Informatics, 2010, 6(1): 54-61. |
48 | Kariwala V, Ye L J, Cao Y. Branch and bound method for regression-based controlled variable selection[J]. Computers & Chemical Engineering, 2013, 54: 1-7. |
49 | Ye L J, Cao Y, Yuan X F, et al. Subset measurement selection for globally self-optimizing control of Tennessee Eastman process[J]. IFAC-PapersOnLine, 2016, 49(7): 121-126. |
50 | Ye L J, Królicka M, Cao Y. Control reconfiguration to improve HDA process optimality[J]. IFAC-PapersOnLine, 2018, 51(18): 434-439. |
51 | Yelchuru R, Skogestad S. Convex formulations for optimal selection of controlled variables and measurements using mixed integer quadratic programming[J]. Journal of Process Control, 2012, 22(6): 995-1007. |
52 | Jafari M R, Arefi M M, Panahi M. Convex reformulations for self-optimizing control optimization problem: linear matrix inequality approach[J]. Journal of Process Control, 2022, 116: 172-184. |
53 | Ye L J, Cao Y, Skogestad S. Global self-optimizing control for uncertain constrained process systems[J]. IFAC-PapersOnLine, 2017, 50(1): 4672-4677. |
54 | Manum H, Skogestad S. Self-optimizing control with active set changes[J]. Journal of Process Control, 2012, 22(5): 873-883. |
55 | Cao Y. Direct and indirect gradient control for static optimisation[J]. International Journal of Automation and Computing, 2005, 2(1): 60-66. |
56 | Krishnamoorthy D, Skogestad S. Online process optimization with active constraint set changes using simple control structures[J]. Industrial & Engineering Chemistry Research, 2019, 58(30): 13555-13567. |
57 | Hu W H, Umar L M, Xiao G X, et al. Local self-optimizing control of constrained processes[J]. Journal of Process Control, 2012, 22(2): 488-493. |
58 | Bottari A, Marchetti P A, Marchetti A G. Self-optimizing steady-state back-off approach for control structure selection[J]. Industrial & Engineering Chemistry Research, 2019, 58(30): 13699-13717. |
59 | 卢静宜, 曹志兴, 高福荣. 批次过程控制——回顾与展望[J]. 自动化学报, 2017, 43(6): 933-943. |
Lu J Y, Cao Z X, Gao F R. Batch process control—overview and outlook[J]. Acta Automatica Sinica, 2017, 43(6): 933-943. | |
60 | Srinivasan B, Palanki S, Bonvin D. Dynamic optimization of batch processes[J]. Computers & Chemical Engineering, 2003, 27(1): 1-26. |
61 | Lu J Y, Cao Z X, Gao F R. Multipoint iterative learning model predictive control[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6230-6240. |
62 | Lu J Y, Cao Z X, Zhang R D, et al. Nonlinear monotonically convergent iterative learning control for batch processes[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5826-5836. |
63 | Cao Z X, Dürr H B, Ebenbauer C, et al. Iterative learning and extremum seeking for repetitive time-varying mappings[J]. IEEE Transactions on Automatic Control, 2017, 62(7): 3339-3353. |
64 | Lu J Y, Cao Z X, Hu Q R, et al. Optimal iterative learning control for batch processes in the presence of time-varying dynamics[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(1): 680-692. |
65 | François G, Srinivasan B, Bonvin D. Use of measurements for enforcing the necessary conditions of optimality in the presence of constraints and uncertainty[J]. Journal of Process Control, 2005, 15(6): 701-712. |
66 | 叶凌箭, 宋执环, 马修水. 间歇过程的批间自优化控制[J]. 化工学报, 2015, 66(7): 2573-2580. |
Ye L J, Song Z H, Ma X S. Batch-to-batch self-optimizing control for batch processes[J]. CIESC Journal, 2015, 66(7): 2573-2580. | |
67 | Ye L J, Guan H W, Yuan X F, et al. Run-to-run optimization of batch processes with self-optimizing control strategy[J]. The Canadian Journal of Chemical Engineering, 2017, 95(4): 724-736. |
68 | Dahl-Olsen H, Narasimhan S, Skogestad S. Optimal output selection for control of batch processes[C]//2008 American Control Conference. Seattle, WA, USA: IEEE, 2008: 2870-2871. |
69 | Hu W H, Mao J F, Xiao G X, et al. Selection of self-optimizing controlled variables for dynamic processes[J]. IFAC Proceedings Volumes, 2012, 45(15): 774-779. |
70 | Jäschke J, Fikar M, Skogestad S. Self-optimizing invariants in dynamic optimization[C]//2011 50th IEEE Conference on Decision and Control and European Control Conference. Orlando, FL, USA: IEEE, 2012: 7753-7758. |
71 | Ye L J, Kariwala V, Cao Y. Dynamic optimization for batch processes with uncertainties via approximating invariant[C]//2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA). Melbourne, VIC, Australia: IEEE, 2013: 1786-1791. |
72 | Ye L J, Skogestad S. Dynamic self-optimizing control for unconstrained batch processes[J]. Computers & Chemical Engineering, 2018, 117: 451-468. |
73 | 叶凌箭. 间歇过程的批内自优化控制[J]. 自动化学报, 2022, 48(11): 2777-2787. |
Ye L J. Within-batch self-optimizing control of batch process[J]. Acta Automatica Sinica, 2022, 48(11): 2777-2787. | |
74 | Srinivasan B, Bonvin D, Visser E, et al. Dynamic optimization of batch processes[J]. Computers & Chemical Engineering, 2003, 27(1): 27-44. |
75 | 叶凌箭, 马修水, 宋执环. 不确定性间歇过程的一种实时优化控制方法[J]. 化工学报, 2014, 65(9): 3535-3543. |
Ye L J, Ma X S, Song Z H. A real-time optimization approach for uncertain batch processes[J]. CIESC Journal, 2014, 65(9): 3535-3543. | |
76 | Ye L J, Shen F F, Guan H W. Design of hybrid batch-to-batch and within-batch self-optimizing control structures for batch processes[J]. Journal of Process Control, 2022, 113: 1-17. |
77 | Bhattacharjee D, Subbarao K. Extremum seeking control with attenuated steady-state oscillations[J]. Automatica, 2021, 125: 109432. |
78 | Marchetti A, François G, Faulwasser T, et al. Modifier adaptation for real-time optimization—methods and applications[J]. Processes, 2016, 4(4): 55. |
79 | Zhao Z F, Li Y Y, Salsbury T I, et al. Local self-optimizing control based on extremum seeking control[J]. Control Engineering Practice, 2020, 99: 104394. |
80 | Straus J, Krishnamoorthy D, Skogestad S. On combining self-optimizing control and extremum-seeking control—applied to an ammonia reactor case study[J]. Journal of Process Control, 2019, 78: 78-87. |
81 | Srinivasan B, Biegler L T, Bonvin D. Tracking the necessary conditions of optimality with changing set of active constraints using a barrier-penalty function[J]. Computers & Chemical Engineering, 2008, 32(3): 572-579. |
82 | Singhal M, Gudi R D. Optimal batch process regulation using self-optimizing control, NCO tracking[J]. IFAC Proceedings Volumes, 2012, 45(15): 81-86. |
83 | Graciano J E A, Jäschke J, Le Roux G A C, et al. Integrating self-optimizing control and real-time optimization using zone control MPC[J]. Journal of Process Control, 2015, 34: 35-48. |
84 | Baldea M, Araujo A, Skogestad S, et al. Dynamic considerations in the synthesis of self-optimizing control structures[J]. AIChE Journal, 2008, 54(7): 1830-1841. |
85 | Klemets J R A, Hovd M. Accounting for dynamics in self-optimizing control[J]. Journal of Process Control, 2019, 76: 15-26. |
86 | Klemets J R A, Hovd M. An iterative LMI approach to controller design and measurement selection in self-optimizing control[C]//2017 11th Asian Control Conference (ASCC). Gold Coast, QLD, Australia: IEEE, 2018: 2849-2854. |
87 | Pinheiro C I C, Fernandes J L, Domingues L, et al. Fluid catalytic cracking (FCC) process modeling, simulation, and control[J]. Industrial & Engineering Chemistry Research, 2012, 51(1): 1-29. |
88 | Fu S D, Ye L J, Shen F F, et al. Efficiency maximization of a direct internal reforming solid oxide fuel cell in a two-layer self-optimizing control structure[J]. ACS Omega, 2023, 8(16): 14558-14571. |
89 | Chatrattanawet N, Skogestad S, Arpornwichanop A. Control structure design and dynamic modeling for a solid oxide fuel cell with direct internal reforming of methane[J]. Chemical Engineering Research and Design, 2015, 98: 202-211. |
90 | Manum H, Narasimhan S, Skogestad S. Explicit MPC with output feedback using self-optimizing control[J]. IFAC Proceedings Volumes, 2008, 41(2): 6956-6961. |
91 | Grimstad B. Studies in output feedback control[D]. Trondheim: Norwegian University of Science and Technology, 2009. |
92 | Alessio A, Bemporad A. A survey on explicit model predictive control[M]// Nonlinear Model Predictive Control: Towards New Challenging Applications. Springer, 2009: 345-369. |
93 | Jäschke J, Skogestad S. Using process data for finding self-optimizing controlled variables[J]. IFAC Proceedings Volumes, 2013, 46(32): 451-456. |
94 | Ye L J, Cao Y, Li Y D, et al. A data-driven approach for selecting controlled variables[J]. IFAC Proceedings Volumes, 2012, 45(15): 904-909. |
95 | Grema A S, Cao Y. Optimal feedback control of oil reservoir waterflooding processes[J]. International Journal of Automation and Computing, 2016, 13(1): 73-80. |
96 | Zhao Z F, Li Y Y, Salsbury T I, et al. Global self-optimizing control with data-driven optimal selection of controlled variables with application to chiller plant[J]. Journal of Dynamic Systems, Measurement, and Control, 2022, 144(2): 021008. |
97 | Tao W Q, Ye L J, Shen F F, et al. Controlled variables adaptation to improve process optimality using historical operating data[C]//2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS). 2018: 135-140. |
98 | Marchetti A G, Zumoffen D. Self-optimizing control structures with minimum number of process-dependent controlled variables[J]. Industrial & Engineering Chemistry Research, 2014, 53(24): 10177-10193. |
99 | Straus J, Skogestad S. Surrogate model generation using self-optimizing variables[J]. Computers & Chemical Engineering, 2018, 119: 143-151. |
100 | Alves V M C, Lima F S, Silva S K, et al. Metamodel-based numerical techniques for self-optimizing control[J]. Industrial & Engineering Chemistry Research, 2018, 57(49): 16817-16840. |
101 | Heldt S. Dealing with structural constraints in self-optimizing control engineering[J]. Journal of Process Control, 2010, 20(9): 1049-1058. |
102 | Silva S K, Villar S B, da Costa A B, et al. Development and application of an automatic tool for the selection of control variables based on the self-optimizing control methodology[J]. Brazilian Journal of Chemical Engineering, 2017, 34(3): 851-871. |
103 | Lima F S, Alves V M C, Araujo A C B. Metacontrol: a python based application for self-optimizing control using metamodels[J]. Computers & Chemical Engineering, 2020, 140: 106979. |
104 | Tang X H, Zhou C C, Su H X, et al. Self-optimizing control strategy for distributed parameter systems[J]. Industrial & Engineering Chemistry Research, 2023, 62(26): 10121-10132. |
105 | Su H X, Zhou C C, Cao Y, et al. An intelligent approach of controlled variable selection for constrained process self-optimizing control[J]. Systems Science & Control Engineering, 2022, 10(1): 65-72. |
106 | 叶凌箭. 过程控制系统结构优化与设计[D]. 杭州: 浙江大学, 2011. |
Ye L J. Structure optimization and design of process control system[D]. Hangzhou: Zhejiang University, 2011. | |
107 | Kumar V, Kaistha N. Inferential self-optimizing control of a reactor-separator-recycle process[J]. Industrial & Engineering Chemistry Research, 2019, 58(33): 15209-15221. |
108 | Ye L, Cao Y, Yuan X, et al. Subset measurement selection for self-optimizing control of Tennessee Eastman process[C]//The 11th IFAC Symposium on Dynamics and Control of Process Systems (DYCOPS- CAB). Trondheim, Norway, 2016: 121-126. |
109 | de Araújo A C B, Hori E S, Skogestad S. Application of plantwide control to the HDA process. IIRegulatory control[J]. Industrial & Engineering Chemistry Research, 2007, 46(15): 5159-5174. |
110 | Liu Y D, Chang Y Q, Wang F L, et al. Real-time optimization compensation method based on a novel two-level multi-block hybrid model for the hydrometallurgy process[J]. Chemical Engineering Research and Design, 2022, 177: 136-156. |
111 | de Araujo A C B, Brito R P, Shang H. Mitigation of energy intensity of an industrial off-gas cleaning system using process engineering solutions[J]. Journal of Cleaner Production, 2009, 17(16): 1512-1525. |
112 | de Araujo A C B, Shang H. Enhancing a smelter off-gas system using a plant-wide control design[J]. Industrial & Engineering Chemistry Research, 2009, 48(6): 3004-3013. |
113 | Panahi M, Skogestad S. Economically efficient operation of CO2 capturing process(Ⅰ): Self-optimizing procedure for selecting the best controlled variables[J]. Chemical Engineering and Processing: Process Intensification, 2011, 50(3): 247-253. |
114 | Panahi M, Skogestad S. Economically efficient operation of CO2 capturing process(Ⅱ): Design of control layer[J]. Chemical Engineering and Processing: Process Intensification, 2012, 52: 112-124. |
115 | Jienkulsawad P, Skogestad S, Arpornwichanop A. Control structure design of a solid oxide fuel cell and a molten carbonate fuel cell integrated system: top-down analysis[J]. Energy Conversion and Management, 2017, 152: 88-98. |
116 | Jienkulsawad P, Skogestad S, Arpornwichanop A. Control structure design of a solid oxide fuel cell and a molten carbonate fuel cell integrated system: top-down analysis[J]. Energy Conversion and Management, 2017, 152: 88-98. |
117 | Mkwananzi T, Louw T M, Auret L, et al. Combined optimal sensor network design and self-optimizing control with application in a typical sugarcane mill[J]. Journal of Process Control, 2022, 114: 82-91. |
118 | Yin X H, Li S Y, Cai W J. Enhanced-efficiency operating variables selection for vapor compression refrigeration cycle system[J]. Computers & Chemical Engineering, 2015, 80: 1-14. |
[1] | 邵伟明, 韩文学, 宋伟, 杨勇, 陈灿, 赵东亚. 基于分布式贝叶斯隐马尔可夫回归的动态软测量建模方法[J]. 化工学报, 2023, 74(6): 2495-2502. |
[2] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[3] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
[4] | 王雪松, 曾祥宇, 薄翠梅, 汤舒淇, 董超, 李俊, 张泉灵, 金晓明, 叶胜利. PTFE间歇聚合反应过程变周期动态经济优化控制[J]. 化工学报, 2022, 73(9): 3973-3982. |
[5] | 张兴硕, 罗雄麟, 许锋. 催化裂化装置反再系统动态模拟精细化与控制系统“工艺优先”配对设计[J]. 化工学报, 2022, 73(2): 747-758. |
[6] | 李啸晨, 苏宏业, 谢磊, 王一钦. 全局自优化控制策略及其测量变量子集选择[J]. 化工学报, 2021, 72(3): 1585-1594. |
[7] | 薛峰, 李欣铜, 周琨, 魏志强, 葛晓霞, 葛志强, 宋凯. 基于GLSAFIS的氟化工过程操作单元可靠性监测[J]. 化工学报, 2021, 72(11): 5696-5706. |
[8] | 任超,孙琳,罗雄麟. 换热器因应结垢慢时变的控制系统重构分析[J]. 化工学报, 2021, 72(10): 5273-5283. |
[9] | 冯思琦, 罗雄麟. 模式切换类经济预测控制切换时间在线估计[J]. 化工学报, 2020, 71(S2): 225-240. |
[10] | 耿志强, 曾荣甫, 徐圆, 韩永明, 顾祥柏. 融合灰狼优化算法在工控系统入侵检测中的应用[J]. 化工学报, 2020, 71(3): 1080-1087. |
[11] | 王雅欣,徐宝昌,徐朝农,董秀娟,许立伟. 基于工厂数据的注意力LSTM网络辨识方法[J]. 化工学报, 2020, 71(12): 5664-5671. |
[12] | 邓佳伟, 邓晓刚, 曹玉苹, 张晓玲. 基于加权统计局部核主元分析的非线性化工过程微小故障诊断方法[J]. 化工学报, 2019, 70(7): 2594-2605. |
[13] | 黄冬, 罗雄麟. 化工过程大范围工况变化的工况迁移控制策略判定[J]. 化工学报, 2019, 70(5): 1848-1857. |
[14] | 江爱朋, 张全南, 王浩坤, 丁强, 徐炜峰, 王剑. 一种改进的热泵供暖系统动态实时优化策略[J]. 化工学报, 2019, 70(4): 1494-1504. |
[15] | 杨世品, 黄振, 李丽娟, 宋健全, 叶景, 汪辉. 复杂化工过程失配子模型深度诊断与修正算法[J]. 化工学报, 2019, 70(4): 1485-1493. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||