化工学报 ›› 2022, Vol. 73 ›› Issue (2): 747-758.doi: 10.11949/0438-1157.20210953

• 过程系统工程 • 上一篇    下一篇

催化裂化装置反再系统动态模拟精细化与控制系统“工艺优先”配对设计

张兴硕(),罗雄麟(),许锋   

  1. 中国石油大学(北京)信息科学与工程学院自动化系,北京 102249
  • 收稿日期:2021-07-09 修回日期:2021-11-01 出版日期:2022-02-05 发布日期:2022-02-18
  • 通讯作者: 罗雄麟 E-mail:zhangxingshuo_01@qq.com;luoxl@cup.edu.cn
  • 作者简介:张兴硕(1994—),男,硕士研究生,zhangxingshuo_01@qq.com
  • 基金资助:
    国家自然科学基金项目(21676295)

Simulation closer to commercial process and prior process analysis based control loop configuration of FCCU reactor-regenerator system

Xingshuo ZHANG(),Xionglin LUO(),Feng XU   

  1. Department of Automation, College of Information Science and Engineering, China University of Petroleum, Beijing 102249, China
  • Received:2021-07-09 Revised:2021-11-01 Published:2022-02-05 Online:2022-02-18
  • Contact: Xionglin LUO E-mail:zhangxingshuo_01@qq.com;luoxl@cup.edu.cn

摘要:

催化裂化是目前炼油厂中的核心加工工艺,其反应-再生系统是一个多变量紧密耦合的复杂系统,动态模拟和控制系统设计难度较大。目前,催化裂化装置在进行动态建模时设置了大量假设条件,与实际状况存在诸多不符,另外当前的控制回路配对方法未考虑工艺要求,也不适用于催化裂化这样的开环不稳定系统。基于以上原因,以已建立的反应-再生系统数学模型为基础,建立精细化动态模型,对反应器和再生器模型进行真实逼近,不再忽略气相动态变化,将原模型中气相对时间的导数项恢复,通过离散化的分布参数系统模型,对离散化模型中每段提升管和烧焦罐的时变变量加入时滞。仿真结果表明,精细化动态模型更加接近实际化工生产过程。根据上述模型搭建仿真平台,通过对不稳定的反再系统进行工艺优先的控制系统设计,首先根据化工工艺设计控制回路保证系统的稳定性,然后基于相对增益阵方法设计剩余变量配对,在降低了高维系统设计复杂度的同时保证了生产过程安全。设计结果表明,对于催化裂化装置反再系统,基于工艺特性完成控制回路配对后,剩余变量无须再添加多余的控制回路就能保证控制系统的稳定性和适当的控制性能。

关键词: 过程系统, 过程控制, 催化裂化装置, 动态模拟, 控制系统设计

Abstract:

Catalytic cracking is the core processing technology in the current refinery. Its reaction-regeneration system is a complex system closely coupled with multiple variables. It is difficult to design dynamic simulation and control systems. At present, a large number of assumptions have been set up in the process of dynamic modeling of FCCU, which is inconsistent with the actual situation. In addition, the current control loop configuration method does not consider the process requirements and is not suitable for open-loop unstable systems such as FCC. For the above reasons, based on the mathematical model of reactor-regenerator system established by the author, this paper establishes a refined dynamic model to approximate the reactor and regenerator models, no longer ignoring the dynamic changes of gas phase, recover the derivative term of gas relative time in the original model, and through the discrete distributed parameter system model, time delay is added to the time-varying variables of each riser and coke can in the discrete model. The simulation results show that the refined dynamic model is closer to the actual chemical commercial process. Based on the above models, a simulation platform is built to design the prior process analysis based control system for the unstable reactor-regenerator system. Firstly, the control loop is configurated according to the chemical process to ensure the system stability, and then design the matching of remaining variables based on relative gain array method, which not only reduces the design complexity of the high-dimensional system, but also ensures the safety of the commercial process. The design results show that for FCCU reactor-regenerator system, after the control loop configuration is completed based on the process characteristics, the remaining variables can ensure the stability and appropriate control performance of the control system without adding additional control loops.

Key words: process systems, process control, FCCU, dynamic simulating, control system design

中图分类号: 

  • TQ 021.8

图1

在初始时刻进行输入阶跃后气相的变化"

图2

四种模型在控制催化剂藏量和压力的情况下进行主风量阶跃后的曲线"

表1

模型的部分相关参数"

参数/变量数值单位
新鲜原料进料量85t·h-1
原料预热温度220
回炼油流量12.75t·h-1
回炼油浆流量7.25t·h-1
烧焦罐主风量49340m3·h-1
二密相床主风量6658m3·h-1
烧焦罐催化剂藏量24t
二密相床催化剂藏量5t
汽提段催化剂藏量5t
一氧化碳助燃剂投放比0.004%(质量)
提升管高度32m
提升管截面积0.636m2
烧焦罐高度9.810m
烧焦罐截面积19.625m2
烧焦罐温升~39
烧焦罐底部温度~656
提升管底部温度~544
提升管温降~50

图3

烧焦罐主风阶跃后一氧化碳含量变化"

图4

反再系统在不控制温度时的温度曲线"

表2

基于工艺优先的相对能量增益矩阵"

变量REGA各输入对输出的值
Vrg1Vrg2TfreshXs
ya-3.39626.83433.3282-5.7663
yd0.1126-2.42260.61992.6902
?Trg1-0.9462-0.1789-2.46914.5941
yO25.2298-3.2328-0.4790-0.5180

表3

变量配对结果"

操纵变量被控变量
再生器内循环滑阀开度二密相床催化剂藏量
待生滑阀开度汽提段催化剂藏量
富气压缩机转速沉降器压力
再生烟气双动滑阀开度两器压差
再生滑阀开度反应温度

表4

相对能量增益矩阵"

变量REGA各输入对输出的值
Vrg1Vrg2XsTfreshZcrg2FsteamZrgfZcstZcrg21
ya16.9541-8.67700.0010-0.00210-6.8301-0.445800.0001
yd1.8916-0.03140.0333-0.15090-0.7135-0.029400.0003
yo28.4093-2.64794.0771-5.47630-3.1971-0.214300.0496
ΔTrg1-12.2250.0015-0.09706.47390.00046.47160.374300.0015
Tra-0.00080.002800.00080.996800.000500
Praf-0.12532.6651-2.98710.104901.25600.086400.0001
dP-13.8639.6794-0.01530.02050.00283.98601.19070-0.0001
Wst00000000.99990
Wrg2-0.03880.0076-0.01180.029400.02730.037900.9486

图5

精细化模型的控制效果曲线"

表5

原模型的控制器参数"

控制回路KpKI
两器压差控制15250
反应温度控制0.51

表6

精细化模型的控制器参数"

控制回路KpKIKD
两器压差控制101025
反应温度控制0.11.55
1 陈俊武, 卢捍卫. 催化裂化在炼油厂中的地位和作用展望: 催化裂化仍将发挥主要作用[J]. 石油学报(石油加工), 2003, 19(1): 1-11.
Chen J W, Lu H W. Prospects of status and role of FCC in refinery: FCC will continue to play a leading role in petroleum refining industry[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2003, 19(1): 1-11.
2 Weekman V W. A model of catalytic cracking conversion in fixed, moving, and fluid-bed reactors[J]. Industrial & Engineering Chemistry Process Design and Development, 1968, 7(1):90-95.
3 Lee L S, Chen Y W, Huang T N, et al. Four-lump kinetic model for fluid catalytic cracking process[J]. The Canadian Journal of Chemical Engineering, 1989, 67(4): 615-619.
4 Ancheyta-Juárez J, López-Isunza F, Aguilar-Rodrı́guez E. 5-Lump kinetic model for gas oil catalytic cracking[J]. Applied Catalysis A: General, 1999, 177(2): 227-235.
5 Hagelberg P, Eilos I, Hiltunen J, et al. Kinetics of catalytic cracking with short contact times[J]. Applied Catalysis A: General, 2002, 223(1/2): 73-84.
6 Takatsuka T, Sato S, Morimoto Y, et al. Reaction model for fluidized-bed catalytic cracking of residual oil[J]. International Chemical Engineering, 1987, 27(1): 107-116.
7 Jacob S M, Gross B, Voltz S E, et al. A lumping and reaction scheme for catalytic cracking[J]. AIChE Journal, 1976, 22(4): 701-713.
8 Marshall J E, Ward T J. Control of time-delay systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1981, 11(7): 515.
9 罗雄麟, 赵晗, 许锋. TE过程闪蒸罐双时间尺度建模与动态特性分析[J]. 化工学报, 2015, 66(1): 186-196.
Luo X L, Zhao H, Xu F. Two-time scale modeling and dynamic characteristics analysis of flash tank in TE process[J]. CIESC Journal, 2015, 66(1): 186-196.
10 Bristol E. On a new measure of interaction for multivariable process control[J]. IEEE Transactions on Automatic Control, 1966, 11(1): 133-134.
11 He M J, Cai W J, Ni W, et al. RNGA based control system configuration for multivariable processes[J]. Journal of Process Control, 2009, 19(6): 1036-1042.
12 任丽红, 刘雨波, 罗雄麟, 等. 多变量时滞系统的关联分析与变量配对[J]. 化工自动化及仪表, 2012, 39(6): 743-746, 760.
Ren L H, Liu Y B, Luo X L, et al. Association analysis and variable pairing for multivariable system with time delays[J]. Control and Instruments in Chemical Industry, 2012, 39(6): 743-746, 760.
13 罗雄麟, 任丽红, 周晓龙, 等. 常规控制系统配对设计的动态相对增益阵研究[J]. 化工自动化及仪表, 2012, 39(3): 295-300.
Luo X L, Ren L H, Zhou X L, et al. Dynamic RGA for control system configuration of multivariable process[J]. Control and Instruments in Chemical Industry, 2012, 39(3): 295-300.
14 Xiong Q, Cai W J, He M J. A practical loop pairing criterion for multivariable processes[J]. Journal of Process Control, 2005, 15(7): 741-747.
15 He M J, Cai W J. New criterion for control-loop configuration of multivariable processes[J]. Industrial & Engineering Chemistry Research, 2004, 43(22): 7057-7064.
16 Witcher M F, McAvoy T J. Interacting control systems: steady state and dynamic measurement of interaction[J]. ISA Transactions, 1977, 16(3): 35-41.
17 Grosdidier P, Morari M, Holt B R. Closed-loop properties from steady-state gain information[J]. Industrial & Engineering Chemistry Fundamentals, 1985, 24(2): 221-235.
18 Mc Avoy T, Arkun Y, Chen R, et al. A new approach to defining a dynamic relative gain[J]. Control Engineering Practice, 2003, 11(8): 907-914.
19 黄从智, 白焰, 刘向杰. 一类网络化串级控制系统的性能分析[J]. 化工自动化及仪表, 2009, 36(5): 34-39.
Huang C Z, Bai Y, Liu X J. Performance analysis for a class of networked cascade control system[J]. Control and Instruments in Chemical Industry, 2009, 36(5): 34-39.
20 黄从智, 白焰, 李新利. 网络控制系统与网络化串级控制系统的结构分析[J]. 化工自动化及仪表, 2009, 36(2): 1-5.
Huang C Z, Bai Y, Li X L. Architectural analysis of networked control system and networked cascade control system[J]. Control and Instruments in Chemical Industry, 2009, 36(2): 1-5.
21 龚亦同. 化工工艺设计简介[J]. 安徽化工, 1984, 10(1): 37-40.
Gong Y T. Introduction to chemical process design[J]. Anhui Chemical Industry, 1984, 10(1): 37-40.
22 吴志泉. 化工过程设计(一):化工工艺计算[J]. 化学世界, 1987, 28(10): 474-476.
Wu Z Q. Chemical process design (I): Chemical engineering technology calculation[J]. Chemical World, 1987, 28(10): 474-476.
23 朱曾惠. 美国提出化工工艺设计新方向[J]. 化工设计, 2000, 10(3): 50-53.
Zhu Z H. New direction of chemical process design proposed by the United States[J]. Chemical Engineering Design, 2000, 10(3): 50-53.
24 钱学森, 许国志, 王寿云. 组织管理的技术: 系统工程[J]. 上海理工大学学报, 2011, 33(6): 520-525.
Qian X S, Xu G Z, Wang S Y. Organizational management technology: system engineering[J]. Journal of University of Shanghai for Science and Technology, 2011, 33(6): 520-525.
25 刘华平, 孙富春, 何克忠, 等. 奇异摄动控制系统: 理论与应用[J]. 控制理论与应用, 2003, 20(1): 1-7.
Liu H P, Sun F C, He K Z, et al. Survey of singularly perturbed control systems: theory and applications[J]. Control Theory & Applications, 2003, 20(1): 1-7.
26 罗雄麟, 袁璞, 林世雄. 催化裂化装置动态机理模型 (Ⅰ): 反应器部分[J]. 石油学报(石油加工), 1998, 14(1): 34.
Luo X L,Yuan P, Lin S X. Dynamic model of fluid catalytic cracking unit(Ⅰ): Reactor section[J]. Acta Petrolei Sinica(Petroleum Processing Section), 1998, 14(1): 34.
27 罗雄麟, 袁璞, 林世雄. 催化裂化装置动态机理模型(Ⅱ):再生器部分[J]. 石油学报(石油加工), 1998, 14(2): 34.
Luo X L,Yuan P, Lin S X. Dynamic modeling of FCC unit(Ⅱ): Regenerator section[J]. Acta Petrolei Sinica(Petroleum Processing Section), 1998, 14(2): 34.
28 罗雄麟, 袁璞, 林世雄. 催化裂化装置动态机理模型(Ⅲ): 催化剂流动和压力系统[J]. 石油学报(石油加工), 1998, 14(3): 34.
Luo X L,Yuan P, Lin S X. Dynamic modeling of fluid catalytic cracking unit(Ⅲ): Catalyst transport system and pressure system[J]. Acta Petrolei Sinica(Petroleum Processing Section), 1998, 14(3): 34.
29 Wang R, Luo X L, Xu F. Economic and control performance of a fluid catalytic cracking unit: interactions between combustion air and CO promoters[J]. Industrial & Engineering Chemistry Research, 2014, 53(1): 287-304.
30 Berezansky L, Braverman E, Idels L. Nicholson's blowflies differential equations revisited: main results and open problems[J]. Applied Mathematical Modelling, 2010, 34(6): 1405-1417.
31 Wang R, Luo X L, Xu F. Effect of CO combustion promoters on combustion air partition in FCC under nearly complete combustion[J]. Chinese Journal of Chemical Engineering, 2014, 22(5): 531-537.
32 Samad T. A survey on industry impact and challenges thereof [technical activities][J]. IEEE Control Systems Magazine, 2017, 37(1): 17-18.
33 罗雄麟, 许锋. 过程控制与工艺设计一体化: 催化裂化装置动态机理建模与控制分析设计[M]. 北京: 科学出版社, 2008.
Luo X L, Xu F. Integration of Process Control and Process Design: Dynamic Mechanism Modeling and Control Analysis Design of Catalytic Cracking Unit[M]. Beijing: Science Press, 2008.
[1] 周乐, 沈程凯, 吴超, 侯北平, 宋执环. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165.
[2] 王琨, 侍洪波, 谭帅, 宋冰, 陶阳. 局部时差约束邻域保持嵌入算法在故障检测中的应用[J]. 化工学报, 2022, 73(7): 3109-3119.
[3] 杨岭, 崔国民, 周志强, 肖媛. 精细搜索策略应用于质量交换网络综合[J]. 化工学报, 2022, 73(7): 3145-3155.
[4] 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173.
[5] 孟文亮, 李贵贤, 周怀荣, 李婧玮, 王健, 王可, 范学英, 王东亮. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723.
[6] 张淑君, 王诗慧, 张欣, 吉旭, 戴一阳, 党亚固, 周利. 集成轻烃回收单元代理模型的氢气网络多目标优化[J]. 化工学报, 2022, 73(4): 1658-1672.
[7] 王建松, 许锋, 罗雄麟. 化工过程多回路PID控制系统模式切换参数自整定[J]. 化工学报, 2022, 73(4): 1647-1657.
[8] 张欣, 周利, 王诗慧, 吉旭, 毕可鑫. 考虑原油性质波动的炼厂氢气网络集成优化[J]. 化工学报, 2022, 73(4): 1631-1646.
[9] 张建飞, 林嘉奖, 罗雄麟, 许锋. 重油催化裂化装置产品分布调控与优化模拟分析[J]. 化工学报, 2022, 73(3): 1232-1245.
[10] 曹森山, 许锋, 罗雄麟. 基于稳定性的循环物流系统流程模拟——以催化裂化反应-再生系统为例[J]. 化工学报, 2022, 73(3): 1256-1269.
[11] 张成, 潘立志, 李元. 基于加权统计特征KICA的故障检测与诊断方法[J]. 化工学报, 2022, 73(2): 827-837.
[12] 徐健玮, 梁颖宗, 罗向龙, 陈健勇, 杨智, 陈颖. 液化天然气深冷-膜蒸馏海水淡化系统集成与分析[J]. 化工学报, 2021, 72(S1): 437-444.
[13] 卢道铭, 唐钊艇, 范怡平, 卢春喜. 大差异颗粒分级再生设备的性能研究[J]. 化工学报, 2021, 72(8): 4184-4195.
[14] 谢府命, 许锋, 罗雄麟. 工艺调度对乙炔加氢反应器优化运行策略的影响分析[J]. 化工学报, 2021, 72(5): 2718-2726.
[15] 贾小平, 石磊, 杨友麒. 工业园区生态化发展的挑战与过程系统工程的机遇[J]. 化工学报, 2021, 72(5): 2373-2391.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!