化工学报 ›› 2024, Vol. 75 ›› Issue (4): 1355-1369.DOI: 10.11949/0438-1157.20231204
刘恺轩(), 姜沁源(), 汪菲, 李润, 朱平, 王康康, 臧永路, 赵彦龙, 张如范()
收稿日期:
2023-11-21
修回日期:
2024-01-03
出版日期:
2024-04-25
发布日期:
2024-06-06
通讯作者:
张如范
作者简介:
刘恺轩(2000—),男,硕士研究生,liukaixu23@mails.tsinghua.edu.cn基金资助:
Kaixuan LIU(), Qinyuan JIANG(), Fei WANG, Run LI, Ping ZHU, Kangkang WANG, Yonglu ZANG, Yanlong ZHAO, Rufan ZHANG()
Received:
2023-11-21
Revised:
2024-01-03
Online:
2024-04-25
Published:
2024-06-06
Contact:
Rufan ZHANG
摘要:
碳纳米管因其优异的力学、电学、热学和光学性能,在碳基集成电路、超强超韧纤维、机械储能、柔性可穿戴设备等众多尖端领域拥有广阔的应用前景。碳纳米管的单体结构和微观形貌(如长度、取向度、缺陷浓度、洁净程度等)对其基础物理性质有显著的影响。在各类碳纳米管中,只有具有宏观长度、低缺陷浓度和高取向度的超长碳纳米管才能充分体现和发挥其本征的性能优势并满足很多尖端领域对其结构和性能的严格要求。实现超长碳纳米管实际应用的关键在于实现其大规模制备,然而其目前的产率远远无法满足应用需求,因而其在高密度、高产率制备方面依然面临很多挑战。深入讨论了超长碳纳米管的生长机理,分析了超长碳纳米管产率低的原因,系统总结了高密度超长碳纳米管的制备方法,并介绍了目前在超长碳纳米管实际应用方面的最新进展。另外,还总结了超长碳纳米管制备领域所面临的科学和技术挑战,并对未来的发展方向进行了深入的讨论。
中图分类号:
刘恺轩, 姜沁源, 汪菲, 李润, 朱平, 王康康, 臧永路, 赵彦龙, 张如范. 高密度超长碳纳米管的可控制备:进展与展望[J]. 化工学报, 2024, 75(4): 1355-1369.
Kaixuan LIU, Qinyuan JIANG, Fei WANG, Run LI, Ping ZHU, Kangkang WANG, Yonglu ZANG, Yanlong ZHAO, Rufan ZHANG. Controlled synthesis of high-density ultralong carbon nanotubes: progress and prospects[J]. CIESC Journal, 2024, 75(4): 1355-1369.
图5 利用催化剂预沉积和多次生长提升超长碳纳米管阵列密度[56]
Fig.5 Improving the areal density of ultralong CNTs by utilizing the preloading of catalysts and multi-cycle growth[56]
48 | Ding L, Zhou W W, Chu H B, et al. Direct preparation and patterning of iron oxide nanoparticles via microcontact printing on silicon wafers for the growth of single-walled carbon nanotubes[J]. Chemistry of Materials, 2006, 18(17): 4109-4114. |
49 | Li B, Cao X H, Huang X, et al. Facile “needle-scratching” method for fast catalyst patterns used for large-scale growth of densely aligned single-walled carbon-nanotube arrays[J]. Small, 2009, 5(18): 2061-2065. |
50 | Huang L M, White B, Sfeir M Y, et al. Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes[J]. The Journal of Physical Chemistry B, 2006, 110(23): 11103-11109. |
51 | Zhang R F, Xie H H, Zhang Y Y, et al. The reason for the low density of horizontally aligned ultralong carbon nanotube arrays[J]. Carbon, 2013, 52: 232-238. |
52 | Cui R L, Zhang Y, Wang J Y, et al. Comparison between copper and iron as catalyst for chemical vapor deposition of horizontally aligned ultralong single-walled carbon nanotubes on silicon substrates[J]. The Journal of Physical Chemistry C, 2010, 114(37): 15547-15552. |
53 | An J N, Zhan Z Y, Hari Krishna S V, et al. Growth condition mediated catalyst effects on the density and length of horizontally aligned single-walled carbon nanotube arrays[J]. Chemical Engineering Journal, 2014, 237: 16-22. |
54 | Xie H H, Zhang R F, Zhang Y Y, et al. Growth of high-density parallel arrays of ultralong carbon nanotubes with catalysts pinned by silica nanospheres[J]. Carbon, 2013, 52: 535-540. |
55 | Xie H H, Zhang R F, Zhang Y Y, et al. Graphene/graphite sheet assisted growth of high-areal-density horizontally aligned carbon nanotubes[J]. Chemical Communications, 2014, 50(76): 11158-11161. |
56 | Xie H H, Zhang R F, Zhang Y Y, et al. Preloading catalysts in the reactor for repeated growth of horizontally aligned carbon nanotube arrays[J]. Carbon, 2016, 98: 157-161. |
57 | Zhang Q, Zhou W Y, Xia X G, et al. Transparent and freestanding single-walled carbon nanotube films synthesized directly and continuously via a blown aerosol technique[J]. Advanced Materials, 2020, 32(39): e2004277. |
58 | Zhou T, Niu Y T, Li Z, et al. The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high-strength carbon nanotube fibers[J]. Materials & Design, 2021, 203: 109557. |
59 | Mikhalchan A, Fan Z, Tran T Q, et al. Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method[J]. Carbon, 2016, 102: 409-418. |
60 | Hou P X, Zhang F, Zhang L L, et al. Synthesis of carbon nanotubes by floating catalyst chemical vapor deposition and their applications[J]. Advanced Functional Materials, 2022, 32(11): 2108541. |
61 | Nasibulin A G, Kaskela A, Mustonen K, et al. Multifunctional free-standing single-walled carbon nanotube films[J]. ACS Nano, 2011, 5(4): 3214-3221. |
62 | Bai Y X, Zhang R F, Ye X, et al. Carbon nanotube bundles with tensile strength over 80 GPa[J]. Nature Nanotechnology, 2018, 13: 589-595. |
63 | Bai Y X, Yue H J, Wang J, et al. Super-durable ultralong carbon nanotubes[J]. Science, 2020, 369(6507): 1104-1106. |
64 | Wei N, Liu Y, Xie H H, et al. Carbon nanotube light sensors with linear dynamic range of over 120 dB[J]. Applied Physics Letters, 2014, 105(7): 073107. |
65 | Wang H D, Liu J H, Guo Z Y, et al. Thermal transport across the interface between a suspended single-walled carbon nanotube and air[J]. Nanoscale and Microscale Thermophysical Engineering, 2013, 17(4): 349-365. |
66 | Franklin A D. Nanomaterials in transistors: from high-performance to thin-film applications[J]. Science, 2015, 349(6249): aab2750. |
67 | Franklin A D. The road to carbon nanotube transistors[J]. Nature, 2013, 498: 443-444. |
68 | Javey A, Guo J, Wang Q, et al. Ballistic carbon nanotube field-effect transistors[J]. Nature, 2003, 424: 654-657. |
69 | Tang J S, Cao Q, Tulevski G, et al. Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays[J]. Nature Electronics, 2018, 1: 191-196. |
70 | Ghosh S, Bachilo S M, Weisman R B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation[J]. Nature Nanotechnology, 2010, 5: 443-450. |
71 | Hu Y, Chen Y B, Li P, et al. Sorting out semiconducting single-walled carbon nanotube arrays by washing off metallic tubes using SDS aqueous solution[J]. Small, 2013, 9(8): 1306-1311. |
1 | Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58. |
2 | Zhang R F, Wen Q, Qian W Z, et al. Superstrong ultralong carbon nanotubes for mechanical energy storage[J]. Advanced Materials, 2011, 23(30): 3387-3391. |
3 | Bai Y X, Yue H J, Zhang R F, et al. Mechanical behavior of single and bundled defect-free carbon nanotubes[J]. Accounts of Materials Research, 2021, 2(11): 998-1009. |
4 | Dürkop T, Getty S A, Cobas E, et al. Extraordinary mobility in semiconducting carbon nanotubes[J]. Nano Letters, 2004, 4(1): 35-39. |
5 | Peng L M, Zhang Z Y, Wang S. Carbon nanotube electronics: recent advances[J]. Materials Today, 2014, 17(9): 433-442. |
6 | Anantram M P, Léonard F. Physics of carbon nanotube electronic devices[J]. Reports on Progress in Physics, 2006, 69(3): 507-561. |
7 | Javey A, Guo J, Farmer D B, et al. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-κ gate dielectrics[J]. Nano Letters, 2004, 4(3): 447-450. |
8 | Hone J, Whitney M, Piskoti C, et al. Thermal conductivity of single-walled carbon nanotubes[J]. Physical Review B, 1999, 59(4): R2514-R2516. |
9 | Berber S, Kwon Y K, Tomanek D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters, 2000, 84(20): 4613-4616. |
10 | Yang L J, Wang S, Zeng Q S, et al. Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection[J]. Small, 2013, 9(8): 1225-1236. |
11 | Araujo P T, Doorn S K, Kilina S, et al. Third and fourth optical transitions in semiconducting carbon nanotubes[J]. Physical Review Letters, 2007, 98(6): 067401. |
12 | Liu L J, Han J, Xu L, et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics[J]. Science, 2020, 368(6493): 850-856. |
13 | Shulaker M M, Hills G, Park R S, et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip[J]. Nature, 2017, 547: 74-78. |
14 | Zhu H W, Xu C L, Wu D H, et al. Direct synthesis of long single-walled carbon nanotube strands[J]. Science, 2002, 296(5569): 884-886. |
15 | Bai Y X, Shen B Y, Zhang S L, et al. Storage of mechanical energy based on carbon nanotubes with high energy density and power density[J]. Advanced Materials, 2019, 31(9): e1800680. |
16 | Zhang Y M, Liu D X, Huang Q Y, et al. Mixed-dimensional van der Waals engineering for charge transfer enables wafer-level flexible electronics[J]. Advanced Functional Materials, 2022, 32(36): 2205111. |
17 | Hussain A, Liao Y P, Zhang Q, et al. Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes[J]. Nanoscale, 2018, 10(20): 9752-9759. |
18 | Fu C, Sheng Z Z, Zhang X T. Laminated structural engineering strategy toward carbon nanotube-based aerogel films[J]. ACS Nano, 2022, 16(6): 9378-9388. |
19 | Wang J N, Luo X G, Wu T, et al. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity[J]. Nature Communications, 2014, 5: 3848. |
20 | Wang Y, Wei F, Luo G H, et al. The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor[J]. Chemical Physics Letters, 2002, 364(5/6): 568-572. |
21 | Hata K J, Futaba D N, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes[J]. Science, 2004, 306(5700): 1362-1364. |
22 | Li J H, Liu K H, Liang S B, et al. Growth of high-density-aligned and semiconducting-enriched single-walled carbon nanotubes: decoupling the conflict between density and selectivity[J]. ACS Nano, 2014, 8(1): 554-562. |
23 | Zhang R F, Zhang Y Y, Wei F. Controlled synthesis of ultralong carbon nanotubes with perfect structures and extraordinary properties[J]. Accounts of Chemical Research, 2017, 50(2): 179-189. |
24 | Wei F, Zhang Q, Qian W Z, et al. The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: a multiscale space-time analysis[J]. Powder Technology, 2008, 183(1): 10-20. |
25 | Yang X S, Yuan L X, Peterson V K, et al. Open-ended aligned carbon nanotube arrays produced using CO2-assisted floating-ferrocene chemical vapor deposition[J]. The Journal of Physical Chemistry C, 2011, 115(29): 14093-14097. |
72 | Tu X M, Hight Walker A R, Khripin C Y, et al. Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes[J]. Journal of the American Chemical Society, 2011, 133(33): 12998-13001. |
73 | Nish A, Hwang J Y, Doig J, et al. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers[J]. Nature Nanotechnology, 2007, 2: 640-646. |
74 | Cao Q, Han S J, Tulevski G S, et al. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics[J]. Nature Nanotechnology, 2013, 8: 180-186. |
75 | Yao J, Li Y J, Li Y H, et al. Rapid annealing and cooling induced surface cleaning of semiconducting carbon nanotubes for high-performance thin-film transistors[J]. Carbon, 2021, 184: 764-771. |
76 | Wang H M, Li S, Wang Y L, et al. Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor[J]. Advanced Materials, 2020, 32(11): e1908214. |
77 | Choi J, Kim J. Batch-processed carbon nanotube wall as pressure and flow sensor[J]. Nanotechnology, 2010, 21(10): 105502. |
78 | Li R, Jiang Q Y, Wang F, et al. Fast in-situ optical visualization of carbon nanotubes assisted by smoke[J]. Small Methods, 2022, 6(1): e2101333. |
79 | Zhu Z X, Wei N, Xie H H, et al. Acoustic-assisted assembly of an individual monochromatic ultralong carbon nanotube for high on-current transistors[J]. Science Advances, 2016, 2(11): e1601572. |
26 | Hu Y, Kang L X, Zhao Q C, et al. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts[J]. Nature Communications, 2015, 6: 6099. |
27 | Kang L X, Zhang S C, Li Q W, et al. Growth of horizontal semiconducting SWNT arrays with density higher than 100 tubes/μm using ethanol/methane chemical vapor deposition[J]. Journal of the American Chemical Society, 2016, 138(21): 6727-6730. |
28 | Ding L, Tselev A, Wang J Y, et al. Selective growth of well-aligned semiconducting single-walled carbon nanotubes[J]. Nano Letters, 2009, 9(2): 800-805. |
29 | Chen Y B, Hu Y, Fang Y, et al. Lattice-directed growth of single-walled carbon nanotubes with controlled geometries on surface[J]. Carbon, 2012, 50(9): 3295-3297. |
30 | Huang S M, Woodson M, Smalley R, et al. Growth mechanism of oriented long single walled carbon nanotubes using “Fast-heating” chemical vapor deposition process[J]. Nano Letters, 2004, 4(6): 1025-1028. |
31 | Jin Z, Chu H B, Wang J Y, et al. Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays[J]. Nano Letters, 2007, 7(7): 2073-2079. |
32 | Wen Q, Zhang R F, Qian W Z, et al. Growing 20 cm long DWNTs/TWNTs at a rapid growth rate of 80—90 μm/s[J]. Chemistry of Materials, 2010, 22(4): 1294-1296. |
33 | Gao J, Zhu Z X, Shen B Y, et al. Bandgap-coupled template autocatalysis toward the growth of high-purity sp2 nanocarbons[J]. Advanced Science, 2021, 8(7): 2003078. |
34 | Zhu Z X, Wei N, Cheng W J, et al. Rate-selected growth of ultrapure semiconducting carbon nanotube arrays[J]. Nature Communications, 2019, 10: 4467. |
35 | Liu Y, Hong J X, Zhang Y, et al. Flexible orientation control of ultralong single-walled carbon nanotubes by gas flow[J]. Nanotechnology, 2009, 20(18): 185601. |
36 | Tulevski G S, Franklin A D, Frank D, et al. Toward high-performance digital logic technology with carbon nanotubes[J]. ACS Nano, 2014, 8(9): 8730-8745. |
37 | Zhang R F, Zhang Y Y, Wei F. Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications[J]. Chemical Society Reviews, 2017, 46(12): 3661-3715. |
38 | Jiang Q Y, Wang F, Li R, et al. The inherent thermal effect of substrates on the growth of ultralong carbon nanotubes[J]. Advanced Functional Materials, 2023, 33(10): 2212665. |
39 | Jiang Q Y, Wang F, Li R, et al. Synthesis of ultralong carbon nanotubes with ultrahigh yields[J]. Nano Letters, 2023, 23(2): 523-532. |
40 | Jiang Q Y, Li R, Wang F, et al. Ultrasensitive airflow sensors based on suspended carbon nanotube networks[J]. Advanced Materials, 2022, 34(18): e2107062. |
41 | Zheng L X, O'Connell M J, Doorn S K, et al. Ultralong single-wall carbon nanotubes[J]. Nature Materials, 2004, 3: 673-676. |
42 | Peng B H, Yao Y G, Zhang J. Effect of the Reynolds and Richardson numbers on the growth of well-aligned ultralong single-walled carbon nanotubes[J]. The Journal of Physical Chemistry C, 2010, 114(30): 12960-12965. |
43 | Wang X S, Li Q Q, Xie J, et al. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates[J]. Nano Letters, 2009, 9(9): 3137-3141. |
44 | Satō T. Spectral emissivity of silicon[J]. Japanese Journal of Applied Physics, 1967, 6(3): 339. |
45 | Zhang R F, Zhang Y Y, Zhang Q, et al. Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution[J]. ACS Nano, 2013, 7(7): 6156-6161. |
46 | McCarthy D E. Transmittance of optical materials from 0.17 μm to 3.0 μm [J]. Applied Optics, 1967, 6(11): 1896-1898. |
47 | Inoue T, Hasegawa D, Badar S, et al. Effect of gas pressure on the density of horizontally aligned single-walled carbon nanotubes grown on quartz substrates[J]. The Journal of Physical Chemistry C, 2013, 117(22): 11804-11810. |
[1] | 张少博, 方莉, 高雪焘, 程文婷. 碱式硫酸镁晶须的可控制备及不同离子的影响机制[J]. 化工学报, 2021, 72(6): 3031-3040. |
[2] | 苏瑶瑶, 李平凡, 汪伟, 巨晓洁, 谢锐, 刘壮, 褚良银. 微流控液滴模板法可控构建功能微颗粒材料[J]. 化工学报, 2021, 72(1): 42-60. |
[3] | 柳璐, 张文, 王宇新. 石墨相氮化碳的可控制备及其在能源催化中的应用[J]. 化工学报, 2018, 69(11): 4577-4591. |
[4] | 程易, 陈家琦, 丁石. 高温气相法可控制备纳米TiO2 [J]. 化工学报, 2007, 58(8): 2103-2109. |
[5] | ,刘立明,李 寅,陈 坚. 以高产量、高产率、高生产强度为目标的发酵过程优化技术 [J]. CIESC Journal, 2006, 25(10): 1128-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 194
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 387
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||