化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4586-4600.DOI: 10.11949/0438-1157.20241084
周怀荣1(
), 伊嘉伟1, 曹阿波1, 郭奥雪1, 王东亮1, 杨勇1, 杨思宇2
收稿日期:2024-09-26
修回日期:2024-10-25
出版日期:2025-09-25
发布日期:2025-10-23
通讯作者:
周怀荣
作者简介:周怀荣(1988—),男,博士,副教授,zhouhr@lut.edu.cn
基金资助:
Huairong ZHOU1(
), Jiawei YI1, Abo CAO1, Aoxue GUO1, Dongliang WANG1, Yong YANG1, Siyu YANG2
Received:2024-09-26
Revised:2024-10-25
Online:2025-09-25
Published:2025-10-23
Contact:
Huairong ZHOU
摘要:
针对传统二氧化碳加氢制甲醇单程转化率低的问题,提出了一种新的工艺:共电解耦合CO2间接加氢制甲醇(Co-SOEC-CO2tM),该工艺由共电解制取合成气单元、精馏单元以及二氧化碳捕集单元组成。基于工艺全流程模拟数据,进行公用工程电气化改造,并采用元素利用率、能效、CO2排放、生产成本指标等对新工艺进行技术经济评价,并与传统甲醇合成工艺进行对比分析。结果表明:新工艺的能效最高可达61.76%,远高于其他传统工艺。新工艺的氢元素利用率为70.99%,碳元素利用率为80.84%,CO2排放可以低至0.197 t/t (MeOH),相比于其他合成甲醇工艺具有明显优势。然而,当前可再生能源电价为0.35 CNY/kWh,新工艺成本较高,随着可再生能源的大力发展,未来电价下降至0.1 CNY/kWh时,新工艺的成本最低可降至1785.16 CNY/t (MeOH),具备良好的经济可行性和优势。
中图分类号:
周怀荣, 伊嘉伟, 曹阿波, 郭奥雪, 王东亮, 杨勇, 杨思宇. 共电解耦合CO2间接加氢制甲醇工艺集成设计与性能评价[J]. 化工学报, 2025, 76(9): 4586-4600.
Huairong ZHOU, Jiawei YI, Abo CAO, Aoxue GUO, Dongliang WANG, Yong YANG, Siyu YANG. Integrated design and performance evaluation of co-electrolysis coupled CO2 indirect hydrogenation methanol synthesis process[J]. CIESC Journal, 2025, 76(9): 4586-4600.
| Reaction | k | Ea/(J/(mol·K)) |
|---|---|---|
| A | 4.0638×10-6 [kmol/(kgcat·s·Pa)] | 11695 |
| B | 9.0421×108 [kmol/(kgcat·s·Pa1/2)] | 112860 |
| C | 1.5188×10-33 [kmol/(kgcat·s·Pa)] | 266010 |
表1 反应动力学参数[26]
Table 1 Reaction kinetic parameters[26]
| Reaction | k | Ea/(J/(mol·K)) |
|---|---|---|
| A | 4.0638×10-6 [kmol/(kgcat·s·Pa)] | 11695 |
| B | 9.0421×108 [kmol/(kgcat·s·Pa1/2)] | 112860 |
| C | 1.5188×10-33 [kmol/(kgcat·s·Pa)] | 266010 |
| 流股 | 温度/℃ | 压力/MPa | 摩尔流量/ (kmol/h) | 摩尔分数/% | 质量流量/ (kg/h) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| H2O | O2 | H2 | CO2 | N2 | CO | CH3OH | |||||
| 1 | 42.00 | 0.13 | 40000 | 4.20 | 3.3 | 0 | 14.6 | 77.9 | 0 | 0 | 1202421 |
| 2 | 40.00 | 0.10 | 5232 | 0 | 0 | 0 | 100.00 | 0 | 0 | 0 | 230266 |
| 3 | 25.00 | 0.10 | 13300 | 100.00 | 0 | 0 | 0 | 0 | 0 | 0 | 239603 |
| 4 | 40.00 | 0.10 | 16537 | 0 | 0 | 68.36 | 3.49 | 0 | 28.15 | 0 | 178578 |
| 5 | 230.00 | 5.00 | 75444 | 0.01 | 0 | 88.38 | 2.57 | 0 | 8.60 | 0.44 | 412260 |
| 6 | 250.00 | 5.00 | 65189 | 0.77 | 0 | 85.79 | 2.21 | 0 | 2.84 | 8.38 | 412260 |
| 7 | 72.74 | 0.13 | 5617 | 8.77 | 0 | 0 | 0 | 0 | 0 | 91.23 | 173072 |
| 8 | 64.38 | 0.10 | 4732 | 0.25 | 0 | 0 | 0 | 0 | 0 | 99.75 | 151270 |
表2 SOEC系统关键物流模拟结果
Table 2 Critical logistics simulation results of SOEC system
| 流股 | 温度/℃ | 压力/MPa | 摩尔流量/ (kmol/h) | 摩尔分数/% | 质量流量/ (kg/h) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| H2O | O2 | H2 | CO2 | N2 | CO | CH3OH | |||||
| 1 | 42.00 | 0.13 | 40000 | 4.20 | 3.3 | 0 | 14.6 | 77.9 | 0 | 0 | 1202421 |
| 2 | 40.00 | 0.10 | 5232 | 0 | 0 | 0 | 100.00 | 0 | 0 | 0 | 230266 |
| 3 | 25.00 | 0.10 | 13300 | 100.00 | 0 | 0 | 0 | 0 | 0 | 0 | 239603 |
| 4 | 40.00 | 0.10 | 16537 | 0 | 0 | 68.36 | 3.49 | 0 | 28.15 | 0 | 178578 |
| 5 | 230.00 | 5.00 | 75444 | 0.01 | 0 | 88.38 | 2.57 | 0 | 8.60 | 0.44 | 412260 |
| 6 | 250.00 | 5.00 | 65189 | 0.77 | 0 | 85.79 | 2.21 | 0 | 2.84 | 8.38 | 412260 |
| 7 | 72.74 | 0.13 | 5617 | 8.77 | 0 | 0 | 0 | 0 | 0 | 91.23 | 173072 |
| 8 | 64.38 | 0.10 | 4732 | 0.25 | 0 | 0 | 0 | 0 | 0 | 99.75 | 151270 |
| CO2排放 | 数值 |
|---|---|
| 原煤燃烧/(t/MJ) | 98 |
| 风力发电/(t/MWh) | 22000 |
| 光伏发电/(t/MWh) | 101500 |
| 风光耦合发电/(t/MWh) | 23300 |
表3 CO2间接排放因子
Table 3 Indirect emission factor
| CO2排放 | 数值 |
|---|---|
| 原煤燃烧/(t/MJ) | 98 |
| 风力发电/(t/MWh) | 22000 |
| 光伏发电/(t/MWh) | 101500 |
| 风光耦合发电/(t/MWh) | 23300 |
| 价格 | 当前 | 未来 |
|---|---|---|
| 煤/(CNY/t) | 550.0 | 450.0 |
| 天然气/(CNY/m3) | 1.6 | 1.40 |
| 生物质/(CNY/t) | 750.0 | 600.0 |
| 可再生电能/(CNY/kWh) | 0.35 | 0.1 |
| 碳税/(CNY/t) | 51.0 | 160.0 |
表4 当前场景和未来场景的运营成本
Table 4 Operating costs of the current scenarios and future scenarios
| 价格 | 当前 | 未来 |
|---|---|---|
| 煤/(CNY/t) | 550.0 | 450.0 |
| 天然气/(CNY/m3) | 1.6 | 1.40 |
| 生物质/(CNY/t) | 750.0 | 600.0 |
| 可再生电能/(CNY/kWh) | 0.35 | 0.1 |
| 碳税/(CNY/t) | 51.0 | 160.0 |
| [1] | 王集杰, 韩哲, 陈思宇, 等. 太阳燃料甲醇合成[J]. 化工进展, 2022, 41(3): 1309-1317. |
| Wang J J, Han Z, Chen S Y, et al. Liquid sunshine methanol[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1309-1317. | |
| [2] | 季东, 王健, 王可, 等. 不同CO2捕集技术的CO2耦合绿氢制甲醇工艺研究[J]. 化工学报, 2022, 73(10): 4565-4575. |
| Ji D, Wang J, Wang K, et al. Process research of methanol production by CO2 coupled green hydrogen with different CO2 capture technologies[J]. CIESC Journal, 2022, 73(10): 4565-4575. | |
| [3] | 孔昕山, 黄仁星, 康丽霞, 等. 甲醇模块化生产中分时储热系统的优化设计[J]. 化工学报, 2022, 73(2): 770-781. |
| Kong X S, Huang R X, Kang L X, et al. Optimal design of time-sharing heat storage system for modular production of methanol[J]. CIESC Journal, 2022, 73(2): 770-781. | |
| [4] | 邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20. |
| Zou C N, Li J M, Zhang X, et al. Industrial status, technological progress, challenges and prospects of hydrogen energy[J]. Natural Gas Industry, 2022, 42(4): 1-20. | |
| [5] | 孟文亮. 二氧化碳加氢合成甲醇工艺建模、分析与系统集成研究[D]. 兰州: 兰州理工大学, 2021. |
| Meng W L. Modeling, analysis and system integration of methanol synthesis from carbon dioxide hydrogenation[D]. Lanzhou: Lanzhou University of Technology, 2021. | |
| [6] | Olah G A, Goeppert A, Surya Prakash G K. Beyond Oil and Gas: The Methanol Economy[M]. Washington, DC: Wiley, 2009. |
| [7] | 张晨佳. 高温固体氧化物电解水制氢性能分析与模拟研究[D]. 北京: 华北电力大学, 2021. |
| Zhang C J. Performance analysis and simulation study on hydrogen production from electrolyzed water by high temperature solid oxide[D]. Beijing: North China Electric Power University, 2021. | |
| [8] | 侯权. 高温固体氧化物电解池模拟分析[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2018. |
| Hou Q. Simulation analysis of high temperature solid oxide electrolytic cell[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2018. | |
| [9] | Mohebali Nejadian M, Ahmadi P, Houshfar E. Comparative optimization study of three novel integrated hydrogen production systems with SOEC, PEM, and alkaline electrolyzer[J]. Fuel, 2023, 336: 126835. |
| [10] | Yu S B, Lee S H, Mehran M T, et al. Syngas production in high performing tubular solid oxide cells by using high-temperature H2O/CO2 co-electrolysis[J]. Chemical Engineering Journal, 2018, 335: 41-51. |
| [11] | 王振, 于波, 张文强, 等. 高温共电解H2O/CO2制备清洁燃料[J]. 化学进展, 2013, 25(7): 1229-1236. |
| Wang Z, Yu B, Zhang W Q, et al. Clean fuel production through high temperature co-electrolysis of H2O and CO2 [J]. Progress in Chemistry, 2013, 25(7): 1229-1236. | |
| [12] | Andika R, Nandiyanto A B D, Putra Z A, et al. Co-electrolysis for power-to-methanol applications[J]. Renewable and Sustainable Energy Reviews, 2018, 95: 227-241. |
| [13] | Zhang H F, Desideri U. Techno-economic optimization of power-to-methanol with co-electrolysis of CO2 and H2O in solid-oxide electrolyzers[J]. Energy, 2020, 199: 117498. |
| [14] | Lee B, Lee H, Lim D, et al. Renewable methanol synthesis from renewable H2 and captured CO2: how can power-to-liquid technology be economically feasible?[J]. Applied Energy, 2020, 279: 115827. |
| [15] | Wang D L, Li J W, Meng W L, et al. A near-zero carbon emission methanol production through CO2 hydrogenation integrated with renewable hydrogen: process analysis, modification and evaluation[J]. Journal of Cleaner Production, 2023, 412: 137388. |
| [16] | Zhang Q J, Chen H, Li B, et al. A novel system integrating water electrolysis and supercritical CO2 cycle for biomass to methanol[J]. Applied Thermal Engineering, 2023, 225: 120234. |
| [17] | 李贵贤, 曹阿波, 孟文亮, 等. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
| Li G X, Cao A B, Meng W L, et al. Process design and evaluation of CO2 to methanol coupled with SOEC[J]. CIESC Journal, 2023, 74(7): 2999-3009. | |
| [18] | 李汶颖. 固体氧化物电解池共电解二氧化碳和水机理及性能研究[D]. 北京: 清华大学, 2015. |
| Li W Y. Study on mechanism and performance of co-electrolysis of carbon dioxide and water in solid oxide electrolytic cell[D]. Beijing: Tsinghua University, 2015. | |
| [19] | Clausen L R, Butera G, Jensen S H. High efficiency SNG production from biomass and electricity by integrating gasification with pressurized solid oxide electrolysis cells[J]. Energy, 2019, 172: 1117-1131. |
| [20] | 张俊杰, 孙旺, 高啸天, 等. 固体氧化物电解池制氢关键技术及产业化进展[J]. 化工学报, 2023, 74(12): 4749-4763. |
| Zhang J J, Sun W, Gao X T, et al. Key technology and industrialization progress of hydrogen production by solid oxide electrolytic cell[J]. CIESC Journal, 2023, 74(12): 4749-4763. | |
| [21] | Du Y M, Qin Y Z, Zhang G B, et al. Modelling of effect of pressure on co-electrolysis of water and carbon dioxide in solid oxide electrolysis cell[J]. International Journal of Hydrogen Energy, 2019, 44(7): 3456-3469. |
| [22] | Stoots C M, O'Brien J E, Herring J S, et al. Syngas production via high-temperature coelectrolysis of steam and carbon dioxide[J]. Journal of Fuel Cell Science and Technology, 2009, 6(1): 110141-1101412. |
| [23] | Chen X B, Guan C Z, Xiao G P, et al. Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells[J]. Faraday Discussions, 2015, 182: 341-351. |
| [24] | Ni M. An electrochemical model for syngas production by co-electrolysis of H2O and CO2 [J]. Journal of Power Sources, 2012, 202: 209-216. |
| [25] | An X, Zuo Y Z, Zhang Q, et al. Methanol synthesis from CO2 hydrogenation with a Cu/Zn/Al/Zr fibrous catalyst[J]. Chinese Journal of Chemical Engineering, 2009, 17(1): 88-94. |
| [26] | Kiss A A, Pragt J J, Vos H J, et al. Novel efficient process for methanol synthesis by CO2 hydrogenation[J]. Chemical Engineering Journal, 2016, 284: 260-269. |
| [27] | Wiertzema H, Svensson E, Harvey S. Bottom-up assessment framework for electrification options in energy-intensive process industries[J]. Frontiers in Energy Research, 2020, 8: 192. |
| [28] | Wang D L, Meng W L, Zhou H R, et al. Green hydrogen coupling with CO2 utilization of coal-to-methanol for high methanol productivity and low CO2 emission[J]. Energy, 2021, 231: 120970. |
| [29] | Arnaiz del Pozo C, Cloete S, Jiménez Álvaro Á. Techno-economic assessment of long-term methanol production from natural gas and renewables[J]. Energy Conversion and Management, 2022, 266: 115785. |
| [30] | Deng L Y, Adams T A II. Techno-economic analysis of coke oven gas and blast furnace gas to methanol process with carbon dioxide capture and utilization[J]. Energy Conversion and Management, 2020, 204: 112315. |
| [31] | Harris K, Grim R G, Huang Z, et al. A comparative techno-economic analysis of renewable methanol synthesis from biomass and CO2: opportunities and barriers to commercialization[J]. Applied Energy, 2021, 303: 117637. |
| [32] | Zhang J P, Li Z W, Zhang Z H, et al. Techno-economic analysis of integrating a CO2 hydrogenation-to-methanol unit with a coal-to-methanol process for CO2 reduction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(49): 18062-18070. |
| [33] | Yang Q C, Zhu S, Yang Q, et al. Comparative techno-economic analysis of oil-based and coal-based ethylene glycol processes[J]. Energy Conversion and Management, 2019, 198: 111814. |
| [34] | 李贵贤, 王可, 王健, 等. 膜分离捕集燃煤电厂烟气CO2过程优化设计[J]. 化工学报, 2022, 73(11): 5065-5077. |
| Li G X, Wang K, Wang J, et al. Optimal design of membrane separation process for capturing CO2 from flue gas of coal-fired power plant[J]. CIESC Journal, 2022, 73(11): 5065-5077. | |
| [35] | Adnan M A, Kibria M G. Comparative techno-economic and life-cycle assessment of power-to-methanol synthesis pathways[J]. Applied Energy, 2020, 278: 115614. |
| [36] | 杨庆, 许思敏, 张大伟, 等. 石油与煤路线制乙二醇过程的技术经济分析[J]. 化工学报, 2020, 71(5): 2164-2172. |
| Yang Q, Xu S M, Zhang D W, et al. Techno-economic analysis of oil and coal to ethylene glycol processes[J]. CIESC Journal, 2020, 71(5): 2164-2172. | |
| [37] | Xiang D, Li P, Yuan X Y, et al. Highly efficient carbon utilization of coal-to-methanol process integrated with chemical looping hydrogen and air separation technology: process modeling and parameter optimization[J]. Journal of Cleaner Production, 2020, 258: 120910. |
| [1] | 刘中毅, 胡斌, 王如竹, 赵云, 蔡梓文, 李云峰. 酿酒行业用热电气化发展潜力与供热系统[J]. 化工学报, 2025, 76(S1): 401-408. |
| [2] | 曹健, 钱红亮, 冯新, 陆小华. 热力学视角下的碳中和三问[J]. 化工学报, 2024, 75(11): 4378-4384. |
| [3] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
| [4] | 季东, 王健, 王可, 李婧玮, 孟文亮, 杨勇, 李贵贤, 王东亮, 周怀荣. 不同CO2捕集技术的CO2耦合绿氢制甲醇工艺研究[J]. 化工学报, 2022, 73(10): 4565-4575. |
| [5] | 杨蕴哲,杨卫身,杨凤林,张兴文. 在不分隔的反应器中原位电生成活性氯氧化降解蒽醌染料 [J]. CIESC Journal, 2005, 13(5): 628-633. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号