化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4578-4585.DOI: 10.11949/0438-1157.20250087
收稿日期:2025-01-19
修回日期:2025-02-22
出版日期:2025-09-25
发布日期:2025-10-23
通讯作者:
袁文君
作者简介:段炼(1998—),男,博士研究生,lianduan@stu.xjtu.edu.cn
基金资助:
Lian DUAN(
), Xingrui ZHOU, Wenjun YUAN(
), Fei CHEN
Received:2025-01-19
Revised:2025-02-22
Online:2025-09-25
Published:2025-10-23
Contact:
Wenjun YUAN
摘要:
采用三维直接数值模拟方法,研究了连续相速度脉动对微通道内聚合物液滴生成与形貌的影响规律。基于黏弹塑性Saramito模型和流体体积法,结合局部自适应网格细化技术,分析了液滴的生成过程与形态特征。结果表明,适当的速度脉动可以促进液滴生成,分散相的最大拉伸长度随脉动频率的增加呈现先减小后增大的趋势,脉动振幅的增加会缩短分散相的拉伸长度。脉动作用下,液滴形貌发生显著变化。当液滴速度占主导地位时,液滴头部和侧面会出现明显的轴向拉伸应力。而当连续相速度占主导地位时,液滴侧面拉伸应力显著减小,液滴长度被压缩。此外,连续相速度脉动下,液滴平均长度可以调控在102~193 μm。液滴平均长度和宽度由脉动频率主导,振幅的影响较小。
中图分类号:
段炼, 周星睿, 袁文君, 陈飞. 连续相速度脉动对微通道内聚合物液滴生成和形貌的影响规律[J]. 化工学报, 2025, 76(9): 4578-4585.
Lian DUAN, Xingrui ZHOU, Wenjun YUAN, Fei CHEN. Effects of continuous phase velocity pulsations on the formation and morphology of polymer droplets in microchannels[J]. CIESC Journal, 2025, 76(9): 4578-4585.
图9 一个脉动周期内连续相流速,聚合物液滴长度、宽度以及变形程度随时间的变化
Fig.9 Variation of continuous phase velocity, polymer droplet length, and width, and deformation index with time during a pulsation period
| [1] | 吉笑盈, 郑园, 李晓鹏, 等. 微流控可控制备液滴、颗粒和胶囊及其应用[J]. 化工学报, 2024, 75(4): 1455-1468. |
| Ji X Y, Zheng Y, Li X P, et al. Controlled preparation of droplets, particles and capsules by microfluidics and their applications[J]. CIESC Journal, 2024, 75(4): 1455-1468. | |
| [2] | Barrero A, Loscertales I G. Micro- and nanoparticles via capillary flows[J]. Annual Review of Fluid Mechanics, 2007, 39(1): 89-106. |
| [3] | 黄心童, 耿宇昊, 刘恒源, 等. 微流控制备新型功能纳米粒子研究进展[J]. 化工学报, 2023, 74(1): 355-364. |
| Huang X T, Geng Y H, Liu H Y, et al. Research progress on new functional nanoparticles prepared by microfluidic technology[J]. CIESC Journal, 2023, 74(1): 355-364. | |
| [4] | 陈宇超, 崔永晋, 王凯, 等. 阶梯式T型微通道内液滴、气泡分散规律[J]. 化工学报, 2020, 71(1): 265-273. |
| Chen Y C, Cui Y J, Wang K, et al. Droplet and bubble dispersion in step T-junction microchannel[J]. CIESC Journal, 2020, 71(1): 265-273. | |
| [5] | Cubaud T, Mason T G. Capillary threads and viscous droplets in square microchannels[J]. Physics of Fluids, 2008, 20(5): 053302. |
| [6] | 张德旺, 赵乾坤, 郭笑妮, 等. 微反应器内牛顿/非牛顿流体液-液两相流流动和传质研究[J]. 化工学报, 2024, 75(11): 4162-4169. |
| Zhang D W, Zhao Q K, Guo X N, et al. Flow and mass transfer characteristics of Newtonian/non-Newtonian liquid-liquid flow in a microreactor[J]. CIESC Journal, 2024, 75(11): 4162-4169. | |
| [7] | 刘西洋, 付涛涛, 朱春英, 等. 微通道内非牛顿流体中液滴生成机理研究进展[J]. 化工学报, 2021, 72(2): 772-782. |
| Liu X Y, Fu T T, Zhu C Y, et al. Progress on droplet formation mechanism in non-Newtonian fluids in microchannels[J]. CIESC Journal, 2021, 72(2): 772-782. | |
| [8] | 董鑫, 单永瑞, 刘易诺, 等. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
| Dong X, Shan Y R, Liu Y N, et al. Numerical simulation of bubble plume vortex characteristics for non-Newtonian fluids[J]. CIESC Journal, 2023, 74(5): 1950-1964. | |
| [9] | Cao H, Lu Y, Wu L Y, et al. Shear-thinning fluid droplets formation in axisymmetric flow-focusing microfluidics[J]. Industrial & Engineering Chemistry Research, 2024, 63(8): 3766-3779. |
| [10] | Piau J M. Carbopol gels: elastoviscoplastic and slippery glasses made of individual swollen sponges[J]. Journal of Non-Newtonian Fluid Mechanics, 2007, 144(1): 1-29. |
| [11] | Du W, Fu T T, Zhang Q D, et al. Self-similar breakup of viscoelastic thread for droplet formation in flow-focusing devices[J]. AIChE Journal, 2017, 63(11): 5196-5206. |
| [12] | 项星宇, 王忠东, 董艳鹏, 等. 微通道内屈服应力型流体的流变特性及多相流研究进展[J]. 化工学报, 2023, 74(2): 546-558. |
| Xiang X Y, Wang Z D, Dong Y P, et al. Progress on rheological properties and multiphase flow of yield stress fluids in microchannels[J]. CIESC Journal, 2023, 74(2): 546-558. | |
| [13] | Balasubramanian A G, Sanjay V, Jalaal M, et al. Bursting bubble in an elastoviscoplastic medium[J]. Journal of Fluid Mechanics, 2024, 1001: A9. |
| [14] | Duan L, Yuan W J, Chen F. Regulation of the size and flow pattern of yield stress droplets in flow-focused microchannels by orifice constraints[J]. Chemical Engineering Science, 2024, 300: 120575. |
| [15] | Xiang X Y, Wang Z D, Dong Y P, et al. Droplet formation of yield stress fluids in asymmetric parallelized microchannels[J]. Chemical Engineering Science, 2024, 285: 119561. |
| [16] | Fraggedakis D, Dimakopoulos Y, Tsamopoulos J. Yielding the yield-stress analysis: a study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids[J]. Soft Matter, 2016, 12(24): 5378-5401. |
| [17] | Putz A M V, Burghelea T I, Frigaard I A, et al. Settling of an isolated spherical particle in a yield stress shear thinning fluid[J]. Physics of Fluids, 2008, 20(3): 033102. |
| [18] | Zhu P A, Wang L Q. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2017, 17(1): 34-75. |
| [19] | 宋祺, 杨智, 陈颖, 等. 局部几何构型对聚焦流微通道内液滴生成特性的影响[J]. 化工学报, 2020, 71(4): 1540-1553. |
| Song Q, Yang Z, Chen Y, et al. Effect of local geometry on droplet formation in flow-focusing microchannel[J]. CIESC Journal, 2020, 71(4): 1540-1553. | |
| [20] | Mudugamuwa A, Roshan U, Hettiarachchi S, et al. Periodic flows in microfluidics[J]. Small, 2024, 20: 2404685. |
| [21] | Liu J C, Zheng M Q, Ma Y L, et al. Microreactor with coupled oscillatory flow: research on liquid-solid two-phase characteristics and clogging mechanism[J]. Chemical Engineering Science, 2025, 302: 120790. |
| [22] | Abiev R. Process intensification by pulsations in chemical engineering: some general principles and implementation[J]. Industrial & Engineering Chemistry Research, 2017, 56(45): 13497-13507. |
| [23] | Zhu P A, Tang X, Wang L Q. Droplet generation in co-flow microfluidic channels with vibration[J]. Microfluidics and Nanofluidics, 2016, 20(3): 47. |
| [24] | Mu K, Si T, Li E Q, et al. Numerical study on droplet generation in axisymmetric flow focusing upon actuation[J]. Physics of Fluids, 2018, 30(1): 012111. |
| [25] | Saramito P. A new elastoviscoplastic model based on the Herschel-Bulkley viscoplastic model[J]. Journal of Non-Newtonian Fluid Mechanics, 2009, 158(1/2/3): 154-161. |
| [26] | Phan-Thien N, Tanner R I. A new constitutive equation derived from network theory[J]. Journal of Non-Newtonian Fluid Mechanics, 1977, 2: 353-365. |
| [27] | Kordalis A, Pema D, Androulakis S, et al. Hydrodynamic interaction between coaxially rising bubbles in elastoviscoplastic materials: equal bubbles[J]. Physical Review Fluids, 2023, 8(8): 083301. |
| [28] | Kordalis A, Dimakopoulos Y, Tsamopoulos J. Hydrodynamic interaction between coaxially rising bubbles in elasto-visco-plastic materials: bubbles with a wide range of relative sizes[J]. Physical Review Fluids, 2024, 9(9): 093301. |
| [29] | Zhang H F, Gong W N, Yuan W J, et al. Numerical investigation on the deformation and breakup of an elastoviscoplastic droplet in simple shear flow[J]. Physics of Fluids, 2024, 36(5): 053111. |
| [30] | Duan L, Yuan W J, Hao N J, et al. Polymeric droplet formation and flow pattern evolution in capillary microchannels: effect of fluid elasticity[J]. Physics of Fluids, 2024, 36(3): 033112. |
| [31] | Yuan W J, Zhang M Q, Khoo B C, et al. Dynamics and deformation of a three-dimensional bubble rising in viscoelastic fluids[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 285: 104408. |
| [32] | Sheng L, Ma L, Chen Y C, et al. A comprehensive study of droplet formation in a capillary embedded step T-junction: from squeezing to jetting[J]. Chemical Engineering Journal, 2022, 427: 132067. |
| [1] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [2] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [3] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [4] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [5] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [6] | 何婷, 黄舒阳, 黄坤, 陈利琼. 基于余热利用的天然气化学吸收脱碳-高温热泵耦合流程研究[J]. 化工学报, 2025, 76(S1): 297-308. |
| [7] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [8] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [9] | 陈昇, 李子争, 苗超, 白学刚, 李飞, 刘家璇, 李天天, 杨爽, 吕蓉蓉, 王江云. 大尺度密集场景高危氯气非均匀湍流扩散特性三维CFD模拟[J]. 化工学报, 2025, 76(9): 4630-4643. |
| [10] | 王一飞, 李玉星, 欧阳欣, 赵雪峰, 孟岚, 胡其会, 殷布泽, 郭雅琦. 基于裂尖减压特性的CO2管道断裂扩展数值计算[J]. 化工学报, 2025, 76(9): 4683-4693. |
| [11] | 杨开源, 陈锡忠. 颗粒破碎的离散元及有限离散元模拟方法比较[J]. 化工学报, 2025, 76(9): 4398-4411. |
| [12] | 贾志勇, 沈宪琨, 蓝晓程, 王铁峰. 气体密度对高压流态化影响的CFD-DEM模拟[J]. 化工学报, 2025, 76(9): 4383-4397. |
| [13] | 刘奕扬, 邢志祥, 刘烨铖, 彭明, 李玉洋, 李云浩, 沈宁舟. 加氢站液氢泄漏扩散特性与安全监测数值模拟研究[J]. 化工学报, 2025, 76(9): 4694-4708. |
| [14] | 黄正宗, 刘科成, 李泽方, 曾平生, 刘永富, 闫红杰, 刘柳. 锌精馏炉砖砌式换热室数值模拟与场协同优化[J]. 化工学报, 2025, 76(9): 4425-4439. |
| [15] | 张淇栋, 艾立强, 马原, 吴胜宝, 王磊, 厉彦忠. 基于一维漂移流模型的低温管路预冷过程两相流动与换热特性研究[J]. 化工学报, 2025, 76(8): 3842-3852. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号