化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4893-4902.DOI: 10.11949/0438-1157.20250171
杨猛1(
), 嵇宣哲1, 刘畅1, 余涛1, 付小龙2, 黄佐华1, 汤成龙1
收稿日期:2025-02-24
修回日期:2025-03-31
出版日期:2025-09-25
发布日期:2025-10-23
通讯作者:
杨猛
作者简介:杨猛(1992—),男,博士,讲师,yangmeng@xtju.edu.cn
基金资助:
Meng YANG1(
), Xuanzhe JI1, Chang LIU1, Tao YU1, Xiaolong FU2, Zuohua HUANG1, Chenglong TANG1
Received:2025-02-24
Revised:2025-03-31
Online:2025-09-25
Published:2025-10-23
Contact:
Meng YANG
摘要:
利用快速压缩机发展了可燃混合气引燃固相推进剂的实验方法,研究了C3H6/O2/Ar混合气及C3H6/O2/Ar混合气+NEPE推进剂体系着火特性,使用瞬态压力传感器和高速相机同步获得了C3H6/O2/Ar混合气及C3H6/O2/Ar混合气+NEPE推进剂体系着火过程压力及高速图像,分析了不同C3H6/O2浓度及压缩上止点压力对混合气及混合气+NEPE体系着火的影响,揭示了气相C3H6/O2/Ar混合气引燃含氧化石墨烯NEPE推进剂的机制。结果表明,C3H6/O2/Ar混合气的添加促进了含氧化石墨烯NEPE推进剂的着火,降低了其着火极限;随着C3H6/O2浓度增加,在20 bar(1 bar=0.1 MPa)压力下,NEPE推进剂由不着火转变为着火,并在2% C3H6/9% O2/89% Ar混合气(Mix3)条件下发生爆燃;随着压缩上止点压力的增加,Mix4与Mix4+NEPE体系由不着火转变为着火,且着火延迟期逐渐缩短。
中图分类号:
杨猛, 嵇宣哲, 刘畅, 余涛, 付小龙, 黄佐华, 汤成龙. 含氧化石墨烯NEPE推进剂在气相产物环境下的着火特性[J]. 化工学报, 2025, 76(9): 4893-4902.
Meng YANG, Xuanzhe JI, Chang LIU, Tao YU, Xiaolong FU, Zuohua HUANG, Chenglong TANG. Ignition characteristics of NEPE propellant containing graphene oxide in gaseous product environment[J]. CIESC Journal, 2025, 76(9): 4893-4902.
| Mix | 体积分数/% | pc/bar | ||
|---|---|---|---|---|
| C3H6 | O2 | Ar | ||
| 1 | 0.5 | 2.25 | 97.25 | 20、25、30、35 |
| 2 | 1 | 4.5 | 94.5 | 20、25、30、35 |
| 3 | 2 | 9 | 89 | 20、25、30、35 |
| 4 | 1 | 2.25 | 96.75 | 20、25、30、35 |
表1 测试工况和反应物组分
Table 1 Test conditions and reactant mixtures
| Mix | 体积分数/% | pc/bar | ||
|---|---|---|---|---|
| C3H6 | O2 | Ar | ||
| 1 | 0.5 | 2.25 | 97.25 | 20、25、30、35 |
| 2 | 1 | 4.5 | 94.5 | 20、25、30、35 |
| 3 | 2 | 9 | 89 | 20、25、30、35 |
| 4 | 1 | 2.25 | 96.75 | 20、25、30、35 |
| T | 混合气 | 着火情况 | |||
|---|---|---|---|---|---|
| 20 bar | 25 bar | 30 bar | 35 bar | ||
| 1040 K | Mix1 | × | × | × | √ |
| Mix1+NEPE | √ | √ | √ | √ | |
| 995 K | Mix2 | √ | √ | √ | √ |
| Mix2+NEPE | √ | √ | √ | √ | |
| 895 K | Mix3 | √ | √ | √ | √ |
| Mix3+NEPE | √√ | √√ | √√ | √√ | |
| 980 K | Mix4 | × | × | × | √ |
| Mix4+NEPE | × | × | √ | √ | |
表2 不同混合气及混合气+NEPE体系在不同压力下的着火情况
Table 2 Ignition behaviors of different Mix and Mix+NEPE systems at different pressures
| T | 混合气 | 着火情况 | |||
|---|---|---|---|---|---|
| 20 bar | 25 bar | 30 bar | 35 bar | ||
| 1040 K | Mix1 | × | × | × | √ |
| Mix1+NEPE | √ | √ | √ | √ | |
| 995 K | Mix2 | √ | √ | √ | √ |
| Mix2+NEPE | √ | √ | √ | √ | |
| 895 K | Mix3 | √ | √ | √ | √ |
| Mix3+NEPE | √√ | √√ | √√ | √√ | |
| 980 K | Mix4 | × | × | × | √ |
| Mix4+NEPE | × | × | √ | √ | |
| [1] | Wang Y L, Rong H, Zhang X H, et al. Influences of Bu-NENA and BDNPA/F plasticizers on the properties of binder for high-energy NEPE propellants[J]. Propellants, Explosives, Pyrotechnics, 2021, 46(6): 950-961. |
| [2] | 刘瀚文, 付小龙, 王江宁, 等. 基于近场动力学方法的NEPE推进剂断裂失效研究[J]. 兵工学报, 2024. |
| Liu H W, Fu X L, Wang J N, et al. Study on fracture failure of NEPE propellant based on near-field dynamics method[J]. China Industrial Economics, 2024. | |
| [3] | Li H, Xu J S, Chen X, et al. Experimental investigation and modeling the compressive behavior of NEPE propellant under confining pressure[J]. Propellants, Explosives, Pyrotechnics, 2021, 46(7): 1023-1035. |
| [4] | 李世奇, 强洪夫, 陈铁铸, 等. 单轴拉伸下NEPE固体推进剂细观结构演化行为研究[J]. 含能材料, 2024, 32(2): 175-182. |
| Li S Q, Qiang H F, Chen T Z, et al. Mesostructure evolution behavior of NEPE solid propellant under uniaxial tension[J]. Chinese Journal of Energetic Materials, 2024, 32(2): 175-182. | |
| [5] | Yang M, Yu T, Meng S Q, et al. Effects of graphene oxide addition on ignition sensitivity and burning rate of NEPE propellant under rapid thermal stimulus[J]. Combustion and Flame, 2024, 266: 113500. |
| [6] | 杨猛, 方鸣, 余涛, 等. 氧化石墨烯对含CL-20的NEPE推进剂热分解及燃烧性能的影响[J]. 推进技术, 2025, 46(3): 188-195. |
| Yang M, Fang M, Yu T, et al. Effects of graphene oxide on thermal decomposition and combustion performance of NEPE propellant containing CL-20[J]. Journal of Propulsion Technology, 2025, 46(3): 188-195. | |
| [7] | 王芳, 张小平, 胡润芝, 等. 硝酸酯增塑聚醚高能推进剂高压燃烧性能研究[J]. 推进技术, 2004, 25(5): 469-472. |
| Wang F, Zhang X P, Hu R Z, et al. Study on combustion properties of nitrate ester plasticized polyether propellants at high pressure[J]. Journal of Propulsion Technology, 2004, 25(5): 469-472. | |
| [8] | Sha B S, Na X D, Xia Z X, et al. Experimental study on the combustion characteristics of aluminized nitrate ester plasticized polyether solid propellant under high pressure[J]. Acta Astronautica, 2022, 193: 100-109. |
| [9] | 涂乘崟, 庄宇倩, 李映坤, 等. NEPE推进剂燃烧过程及铝团聚特性[J]. 航空动力学报, 2023, 38(11): 2791-2798. |
| Tu C Y, Zhuang Y Q, Li Y K, et al. Combustion process and aluminum agglomeration characteristics of NEPE propellant[J]. Journal of Aerospace Power, 2023, 38(11): 2791-2798. | |
| [10] | 涂乘崟, 凌志刚, 董龙龙, 等. NEPE推进剂燃烧表面铝团聚物动态行为研究[J]. 推进技术, 2023, 44(3): 248-256. |
| Tu C Y, Ling Z G, Dong L L, et al. Dynamic behavior study of aluminum aggregates on NEPE propellant combustion surface[J]. Journal of Propulsion Technology, 2023, 44(3): 248-256. | |
| [11] | Tu C Y, Feng Y Y, Ling Z G, et al. Thermal decomposition, ignition process and combustion behavior of nitrate ester plasticized polyether propellant at 0.1—3.0 MPa[J]. International Journal of Aerospace Engineering, 2022, 2022(1): 6439787. |
| [12] | 李疏芬, 牛和林, 张钢锤, 等. NEPE推进剂激光点火特性[J]. 推进技术, 2002, 23(2): 172-175. |
| Li S F, Niu H L, Zhang G C, et al. Laser ignition of NEPE propellant[J]. Journal of Propulsion Technology, 2002, 23(2): 172-175. | |
| [13] | Yan X T, Xia Z X, Huang L Y, et al. Combustion of nitrate ester plasticized polyether propellants[J]. Journal of Zhejiang University Science A, 2020, 21(10): 834-847. |
| [14] | 相恒升, 陈雄, 周长省, 等. 环境气体氧含量对NEPE推进剂激光点火过程的影响[J]. 火炸药学报, 2016, 39(3): 75-79. |
| Xiang H S, Chen X, Zhou C S, et al. Effect of oxygen content in environment gas on the laser ignition process of NEPE propellant[J]. Chinese Journal of Explosives & Propellants, 2016, 39(3): 75-79. | |
| [15] | 涂乘崟, 陈雄, 周长省, 等. NEPE推进剂在氮气及空气中的点火燃烧特性[J]. 含能材料, 2022, 30(8): 811-818. |
| Tu C Y, Chen X, Zhou C S, et al. Ignition and combustion characteristics of NEPE propellant in nitrogen and air[J]. Chinese Journal of Energetic Materials, 2022, 30(8): 811-818. | |
| [16] | Yan Q L, Liu P J, He A F, et al. Photosensitive but mechanically insensitive graphene oxide-carbohydrazide-metal hybrid crystalline energetic nanomaterials[J]. Chemical Engineering Journal, 2018, 338: 240-247. |
| [17] | 王帅中, 王健, 张嘉玲, 等. 氧化石墨烯基含能配位聚合物对四组元复合推进剂热分解及燃烧催化作用[J]. 火炸药学报, 2021, 44(3): 308-315. |
| Wang S Z, Wang J, Zhang J L, et al. Catalytic effect of graphene oxide based energetic coordination polymers on thermal decomposition and combustion behavior of four-component composite propellant[J]. Chinese Journal of Explosives & Propellants, 2021, 44(3): 308-315. | |
| [18] | Memon N K, McBain A W, Son S F. Graphene oxide/ammonium perchlorate composite material for use in solid propellants[J]. Journal of Propulsion and Power, 2016, 32(3): 682-686. |
| [19] | Zhang X, Hikal W M, Zhang Y, et al. Direct laser initiation and improved thermal stability of nitrocellulose/graphene oxide nanocomposites[J]. Applied Physics Letters, 2013, 102(14): 141905. |
| [20] | Ye B Y, An C W, Zhang Y R, et al. One-step ball milling preparation of nanoscale CL-20/graphene oxide for significantly reduced particle size and sensitivity[J]. Nanoscale Research Letters, 2018, 13(1): 42. |
| [21] | Li R, Wang J, Shen J P, et al. Preparation and characterization of insensitive HMX/graphene oxide composites[J]. Propellants, Explosives, Pyrotechnics, 2013, 38: 798-804. |
| [22] | 杨猛, 丁晓倩, 余涛, 等. 甲烷/氧化亚氮绿色推进剂自着火特性实验及动力学[J]. 化工学报, 2025, 76(3): 1221-1229. |
| Yang M, Ding X Q, Yu T, et al. Experimental and kinetic studies for the ignition characteristic of the green propellant of methane/nitrous oxide[J]. CIESC Journal, 2025, 76(3): 1221-1229. | |
| [23] | Yang M, Liao C Y, Tang C L, et al. The auto-ignition behaviors and risk assessments of double-base propellant containing different 1,1-diamino-2,2-dinitroethene particle sizes under rapid heating[J]. Combustion and Flame, 2021, 234: 111627. |
| [24] | Yang M, Wu Y T, Tang C L, et al. Auto-ignition behaviors of nitromethane in diluted oxygen in a rapid compression machine: critical conditions for ignition, ignition delay times measurements, and kinetic modeling interpretation[J]. Journal of Hazardous Materials, 2019, 377: 52-61. |
| [25] | Yang M, Liao C Y, Tang C L, et al. The auto-ignition behaviors of HMX/NC/NG stimulated by heating in a rapid compression machine[J]. Fuel, 2021, 288: 119693. |
| [26] | Yang M, Ma X, Huang Z H, et al. Role of O2 on nitrous oxide fuel blend ethylene auto-ignition sensitivity[J]. Combustion and Flame, 2024, 259: 113167. |
| [27] | Mittal G, Sung C J. A rapid compression machine for chemical kinetics studies at elevated pressures and temperatures[J]. Combustion Science and Technology, 2007, 179(3): 497-530. |
| [28] | Goldsborough S S, Hochgreb S, Vanhove G, et al. Advances in rapid compression machine studies of low-and intermediate-temperature autoignition phenomena[J]. Progress in Energy and Combustion Science, 2017, 63: 1-78. |
| [29] | Wu Y T, Yang M, Tang C L, et al. Promoting “adiabatic core” approximation in a rapid compression machine by an optimized creviced piston design[J]. Fuel, 2019, 251: 328-340. |
| [30] | Di H S, He X, Zhang P, et al. Effects of buffer gas composition on low temperature ignition of iso-octane and n-heptane [J]. Combustion and Flame, 2014, 161(10): 2531-2538. |
| [1] | 钱慧慧, 王文婕, 陈文尧, 周兴贵, 张晶, 段学志. 聚丙烯定向转化制芳烃:金属-分子筛协同催化机制[J]. 化工学报, 2025, 76(9): 4838-4849. |
| [2] | 麦棹铭, 武颖韬, 王维, 穆海宝, 黄佐华, 汤成龙. 正十二烷-甲烷双燃料非线性着火特性及稀释气体效应研究[J]. 化工学报, 2025, 76(6): 3115-3124. |
| [3] | 孙文浩, 田君, 张锟, 刘娜, 曹宝森, 梁晓嫱. 锂离子电池用高热稳定性新型隔膜的研究新进展[J]. 化工学报, 2025, 76(6): 2524-2543. |
| [4] | 杨猛, 丁晓倩, 余涛, 刘畅, 汤成龙, 黄佐华. 甲烷/氧化亚氮绿色推进剂自着火特性实验及动力学[J]. 化工学报, 2025, 76(3): 1221-1229. |
| [5] | 齐琪, 郭利平, 石李明, 郑映, 潘鹏举. 山梨醇类成核剂改性聚丙烯及其共聚物的结晶行为与性能[J]. 化工学报, 2024, 75(7): 2688-2699. |
| [6] | 李明, 韩路长, 罗和安. 基于NSGA-Ⅲ多目标优化的丙烯高温氯化快速反应器研究[J]. 化工学报, 2024, 75(12): 4547-4554. |
| [7] | 王璐遥, 张广勇, 于海鑫, 张轩诚, 黄岩, 赵玉潮. 聚全氟乙丙烯中空纤维复合膜的制备及其染料/无机盐分离性能研究[J]. 化工学报, 2024, 75(11): 4309-4319. |
| [8] | 张昊, 刘民, 郭新闻. CTAB辅助晶种法制备ZSM-5催化MTP反应[J]. 化工学报, 2024, 75(10): 3579-3587. |
| [9] | 谢诗婷, 刘壮, 谢锐, 巨晓洁, 汪伟, 潘大伟, 褚良银. 聚(N-异丙基丙烯酰胺-共聚-烯丙基硫脲)智能微凝胶的制备及其Hg2+响应性能的研究[J]. 化工学报, 2023, 74(6): 2689-2698. |
| [10] | 靳志远, 单国荣, 潘鹏举. AM/AMPS/SSS三元共聚物的制备及耐温耐盐性能[J]. 化工学报, 2023, 74(2): 916-923. |
| [11] | 郑少杰, 王建斌, 胡激江, 李伯耿, 袁文博, 王宗, 姚臻. 单体组成切换法调控聚丙烯/丁烯合金的结构与性能[J]. 化工学报, 2023, 74(2): 904-915. |
| [12] | 张博, 李壮壮, 赵丹, 钱翠珠, 王宝, 潘鹏举. 聚丙烯流延膜的制备与拉伸过程中的结构演变[J]. 化工学报, 2023, 74(12): 4997-5005. |
| [13] | 陈余, 郑晓妍, 赵辉, 王二强, 李杰, 李春山. Pickering乳液催化非均相羟醛缩合反应研究[J]. 化工学报, 2023, 74(1): 449-458. |
| [14] | 刘佳宁, 马嘉浩, 张军营, 程珏. 顺序双重热固化的硫醇-丙烯酸酯-环氧树脂三维网络的构建及性能[J]. 化工学报, 2022, 73(9): 4173-4186. |
| [15] | 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号