化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2669-2676.doi: 10.11949/0438-1157.20211795

• 催化、动力学与反应器 • 上一篇    下一篇

甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究

李丽媛1(),王建强1,陈奕1,郭友娣1,周健1,刘志成1(),王仰东1,谢在库2   

  1. 1.中国石化上海石油化工研究院,上海 201208
    2.中国石化股份有限公司,北京 100728
  • 收稿日期:2021-12-21 修回日期:2022-02-18 出版日期:2022-06-05 发布日期:2022-06-30
  • 通讯作者: 刘志成 E-mail:lily.sshy@sinopec.com;liuzc.sshy@sinopec.com
  • 作者简介:李丽媛(1984—),女,博士,高工,lily.sshy@sinopec.com
  • 基金资助:
    国家自然科学基金项目(91434102);国家重点研发计划项目(2018YFB0604802)

Study on the mesoscale mechanism of coking and deactivation of ZSM-5 catalyst in methanol to propylene reaction

Liyuan LI1(),Jianqiang WANG1,Yi CHEN1,Youdi GUO1,Jian ZHOU1,Zhicheng LIU1(),Yangdong WANG1,Zaiku XIE2   

  1. 1.Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China
    2.China Petrochemical Corporation (SINOPEC Group), Beijing 100728, China
  • Received:2021-12-21 Revised:2022-02-18 Published:2022-06-05 Online:2022-06-30
  • Contact: Zhicheng LIU E-mail:lily.sshy@sinopec.com;liuzc.sshy@sinopec.com

摘要:

甲醇制丙烯(MTP)是当前煤化工领域亟需发展的关键催化技术,积炭被认为是导致催化剂失活的重要原因之一。以积炭分子筛为研究对象,通过IGA、FTIR及TG等多种表征手段,考察甲醇的吸附行为、分子筛表面酸性、积炭成分与MTP反应中甲醇反应活性之间的构效关系。研究结果表明,甲醇的吸附量随催化剂的失活而降低,其下降速率与甲醇转化率成正比。催化剂上滞留的碳物种的主要成分为轻烃、BTX芳烃、活性结焦和积炭,而其中积炭是引起分子筛失活的主要原因。完全失活的催化剂与新鲜催化剂相比仍保留一定的甲醇吸附能力,推测积炭主要存在于酸活性中心周围。积炭首先覆盖的是B酸中心的羟基和桥式羟基,随后是非骨架Al—OH;而催化剂的甲醇转化率与分子筛中可接触的B酸和L酸数量成正比。另外,基于催化剂的失活速率与转化率存在的正比关系,结合反应动力学,推导出了失活曲线的数学表达式,理论上解释了MTP反应过程中的积炭失活介尺度机制。

关键词: 甲醇制丙烯, ZSM-5, 吸附, 积炭失活, 介尺度, 催化

Abstract:

Methanol to propylene (MTP) is the key technology in coal chemical industry. Coke is considered to be one of the important reasons for the inactivation of catalysts. In this study, the carbon-deposited zeolite was taken as the research object, and the structure-activity relationship among methanol adsorption behavior, surface acidity of molecular sieve, coke composition and methanol reactivity in MTP reaction was investigated by various characterization methods such as IGA, FTIR and TG. It was found that the adsorption capacity of methanol is decreased with the increase of carbon deposition, the decreasing rate is directly proportional to the methanol conversion. The main components of carbon species retained on the catalysts are light hydrocarbons, BTX aromatics, active coking and carbon deposition, and carbon deposition is the main reason for the deactivation of zeolites. Compared with the fresh catalyst, the completely inactivated catalyst still retains certain adsorption ability for methanol, and it is speculated that the carbon deposition mainly exists near the center of acid active site. The hydroxyl and bridge hydroxyl of B acid center are firstly occupied by carbon deposition, followed by extra-framework Al—OH; the methanol conversion was linearly correlated with B acid and L acid in zeolites. In addition, based on the proportional relationship between the deactivation rate of the catalyst and the conversion rate, combined with the reaction kinetics, the mathematical expression of the deactivation curve was deduced, which theoretically explained the mesoscale mechanism of carbon deposition deactivation during the MTP reaction.

Key words: methanol to propylene, ZSM-5, adsorption, coking and deactivation, mesoscale, catalysis

中图分类号: 

  • TQ 032.4

图1

ZSM-5分子筛在MTP反应中甲醇转化率随反应时间的变化"

图2

不同MTP反应时间取样的分子筛的甲醇吸附等温线(373 K, 1 mbar=100 Pa)"

图3

不同MTP反应时间取样的分子筛的甲醇饱和吸附量变化曲线(373 K)"

图4

积炭分子筛的甲醇吸附下降速率与甲醇转化率的关系"

图5

不同反应时间分子筛样品的FTIR谱图(1500~4000 cm-1)"

图6

不同反应时间分子筛样品的FTIR差谱(1300~1800 cm-1)"

图7

不同反应时间分子筛样品的吡啶吸附红外差谱"

图8

不同反应时间分子筛样品的B酸(1540 cm-1)和L酸(1450 cm-1)的含量变化"

图9

不同反应时间分子筛样品的DTG曲线"

图10

不同反应时间分子筛活性结焦和积炭随反应时间的变化"

1 Martínez C, Corma A. Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes[J]. Coordination Chemistry Reviews, 2011, 255(13/14): 1558-1580.
2 Guisnet M, Magnoux P, Martin D. Roles of acidity and pore structure in the deactivation of zeolites by carbonaceous deposits[J]. Studies in Surface Science and Catalysis, 1997, 111: 1-19.
3 Olsbye U, Svelle S, Bjørgen M, et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity[J]. Angewandte Chemie (International Ed. in English), 2012, 51(24): 5810-5831.
4 Bleken F, Skistad W, Barbera K, et al. Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections: comparison of TNU-9, IM-5, ZSM-11 and ZSM-5[J]. Physical Chemistry Chemical Physics: PCCP, 2011, 13(7): 2539-2549.
5 Hereijgers B P C, Bleken F, Nilsen M H, et al. Product shape selectivity dominates the methanol-to-olefins (MTO) reaction over H-SAPO-34 catalysts[J]. Journal of Catalysis, 2009, 264(1): 77-87.
6 Zakaria Z Y, Amin N A S, Linnekoski J. A perspective on catalytic conversion of glycerol to olefins[J]. Biomass and Bioenergy, 2013, 55: 370-385.
7 Khanmohammadi M, Amani S, Garmarudi A B, et al. Methanol-to-propylene process: perspective of the most important catalysts and their behavior[J]. Chinese Journal of Catalysis, 2016, 37(3): 325-339.
8 郭春垒, 方向晨, 贾立明, 等. 分子筛催化剂积炭失活行为探讨[J]. 工业催化, 2011, 19(12): 15-20.
Guo C L, Fang X C, Jia L M, et al. Investigation on coking deactivation behavior of molecular sieve catalysts[J]. Industrial Catalysis, 2011, 19(12): 15-20.
9 Riaz A, Zahedi G, Klemeš J J. A review of cleaner production methods for the manufacture of methanol[J]. Journal of Cleaner Production, 2013, 57: 19-37.
10 Liu Z C, Wang Y D, Xie Z K. Thoughts on the future development of zeolitic catalysts from an industrial point of view[J]. Chinese Journal of Catalysis, 2012, 33(1): 22-38.
11 Asplund S. Coke formation and its effect on internal mass transfer and selectivity in Pd-catalysed acetylene hydrogenation[J]. Journal of Catalysis, 1996, 158(1): 267-278.
12 García-Ochoa F, Santos A. Coke effect in mass transport and morphology of Pt-Al2O3 and Ni-Mo-Al2O3 catalysts[J]. AIChE Journal, 1996, 42(2): 524-531.
13 Park J W, Lee J Y, Kim K S, et al. Effects of cage shape and size of 8-membered ring molecular sieves on their deactivation in methanol-to-olefin (MTO) reactions[J]. Applied Catalysis A: General, 2008, 339(1): 36-44.
14 Schulz H. “Coking” of zeolites during methanol conversion: basic reactions of the MTO-, MTP- and MTG processes[J]. Catalysis Today, 2010, 154(3/4): 183-194.
15 Wood J, Gladden L F. Effect of coke deposition upon pore structure and self-diffusion in deactivated industrial hydroprocessing catalysts[J]. Applied Catalysis A: General, 2003, 249(2): 241-253.
16 Mores D, Stavitski E, Kox M, et al. Space- and time-resolved in situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34[J]. Chemistry — A European Journal, 2008, 14(36): 11320-11327.
17 Chung Y M, Mores D, Weckhuysen B M. Spatial and temporal mapping of coke formation during paraffin and olefin aromatization in individual H-ZSM-5 crystals[J]. Applied Catalysis A: General, 2011, 404(1/2): 12-20.
18 Zhou F, Gao Y, Wu G, et al. Improved catalytic performance and decreased coke formation in post-treated ZSM-5 zeolites for methanol aromatization[J]. Microporous and Mesoporous Materials, 2017, 240: 96-107.
19 Valle B, Castaño P, Olazar M, et al. Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst[J]. Journal of Catalysis, 2012, 285(1): 304-314.
20 刘中民, 陈国权, 王清遐, 等. 分子筛催化剂的失活与积炭[J]. 催化学报, 1994(4):301-303.
Liu Z M, Chen G Q, Wang Q X, et al. Deactivation and coke formation on zeolite catalysts[J]. Chinese Journal of Catalysis, 1994(4):301-303.
21 Ducarme V, Vedrine J C. ZSM-5 and ZSM-11 zeolites: influence of morphological and chemical parameters on catalytic selectivity and deactivation[J]. Applied Catalysis, 1985, 17(1): 175-184.
22 Li C, Stair P C. Ultraviolet Raman spectroscopy characterization of coke formation in zeolites[J]. Catalysis Today, 1997, 33(1/2/3): 353-360.
23 Mores D, Kornatowski J, Olsbye U, et al. Coke formation during the methanol-to-olefin conversion: in situ microspectroscopy on individual H-ZSM-5 crystals with different brønsted acidity[J]. Chemistry — A European Journal, 2011, 17(10): 2874-2884.
24 李丽媛, 陈奕, 许中强, 等. 烃类分子在分子筛中扩散行为研究进展[J]. 化工进展, 2014, 33(3): 655-659, 688.
Li L Y, Chen Y, Xu Z Q, et al. Research advances in the diffusion of hydrocarbons in zeolites[J]. Chemical Industry and Engineering Progress, 2014, 33(3): 655-659, 688.
25 李丽媛, 陈奕, 许中强, 等. 均三甲苯在MCM-22和MCM-56分子筛上的吸附和扩散[J]. 工业催化, 2013, 21(7): 30-34.
Li L Y, Chen Y, Xu Z Q, et al. Adsorption and diffusion of mesitylene on MCM-22 and MCM-56 molecular sieves[J]. Industrial Catalysis, 2013, 21(7): 30-34.
26 Zhou J, Liu Z C, Li L Y, et al. Hierarchical mesoporous ZSM-5 zeolite with increased external surface acid sites and high catalytic performance in o-xylene isomerization[J]. Chinese Journal of Catalysis, 2013, 34(7): 1429-1433.
27 Zhou J, Liu Z C, Wang Y D, et al. Enhanced accessibility and utilization efficiency of acid sites in hierarchical MFI zeolite catalyst for effective diffusivity improvement[J]. RSC Adv., 2014, 4(82): 43752-43755.
28 Zhou J, Wang Y D, Zou W, et al. Mass transfer advantage of hierarchical zeolites promotes methanol converting into para-methyl group in toluene methylation[J]. Industrial & Engineering Chemistry Research, 2017, 56(33): 9310-9321.
29 Zhai M, Li L Y, Ba Y L, et al. Fabricating ZSM-23 with reduced aspect ratio through ball-milling and recrystallization: synthesis, structure and catalytic performance in n-heptane hydroisomerization[J]. Catalysis Today, 2019, 329: 82-93.
30 Sun M H, Zhou J, Hu Z Y, et al. Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency[J]. Matter, 2020, 3(4): 1226-1245.
31 Zhu W, Kapteijn F, van der Linden B, et al. Equilibrium adsorption of linear and branched C6 alkanes on silicalite-1 studied by the tapered element oscillating microbalance[J]. Physical Chemistry Chemical Physics, 2001, 3(9): 1755-1761.
32 Schmidt F, Hoffmann C, Giordanino F, et al. Coke location in microporous and hierarchical ZSM-5 and the impact on the MTH reaction[J]. Journal of Catalysis, 2013, 307: 238-245.
33 Rostamizadeh M, Yaripour F. Dealumination of high silica H-ZSM-5 as long-lived nanocatalyst for methanol to olefin conversion[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 454-463.
34 忻睦迪, 邢恩会. 三甲基膦和金属氧化物复合改性ZSM-5分子筛及其裂解性能研究[J]. 化工学报, 2021, 72(5): 2657-2668.
Xin M D, Xing E H. Researches on trimethylphosphine and metal oxide modification on ZSM-5 and their influence on catalytic cracking[J]. CIESC Journal, 2021, 72(5): 2657-2668.
35 Karge H G, Nießen W, Bludau H. In-situ FTIR measurements of diffusion in coking zeolite catalysts[J]. Applied Catalysis A: General, 1996, 146(2): 339-349.
36 Park J W, Seo G. IR study on methanol-to-olefin reaction over zeolites with different pore structures and acidities[J]. Applied Catalysis A: General, 2009, 356(2): 180-188.
37 Kerssens M M, Sprung C, Whiting G T, et al. Selective staining of zeolite acidity: recent progress and future perspectives on fluorescence microscopy[J]. Microporous and Mesoporous Materials, 2014, 189: 136-143.
38 Bjørgen M, Olsbye U, Kolboe S. Coke precursor formation and zeolite deactivation: mechanistic insights from hexamethylbenzene conversion[J]. Journal of Catalysis, 2003, 215(1): 30-44.
39 Janssens T V W, Svelle S, Olsbye U. Kinetic modeling of deactivation profiles in the methanol-to-hydrocarbons (MTH) reaction: a combined autocatalytic-hydrocarbon pool approach[J]. Journal of Catalysis, 2013, 308: 122-130.
[1] 黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943.
[2] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[3] 孙甲琛, 孙文涛, 孙慧, 吕波, 李春. 甘草黄酮合酶催化甘草素特异性合成7,4′-二羟基黄酮[J]. 化工学报, 2022, 73(7): 3202-3211.
[4] 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239.
[5] 王姝焱, 张瑞阳, 刘润, 刘凯, 周莹. Mn(BO22/BNO界面结构调控增强催化臭氧分解性能研究[J]. 化工学报, 2022, 73(7): 3193-3201.
[6] 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789.
[7] 刘晓涯, 王金超, 刘莹, 马敬环. 水合肼制氢纳米催化剂改性制备及机理研究进展[J]. 化工学报, 2022, 73(7): 2819-2834.
[8] 陈昇, 王梦钶, 鲁波娜, 李秀峰, 刘岑凡, 刘梦溪, 范怡平, 卢春喜. 原料油汽化特性对催化裂化反应结焦过程影响的CFD模拟[J]. 化工学报, 2022, 73(7): 2982-2995.
[9] 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173.
[10] 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181.
[11] 陈永安, 周安宁, 李云龙, 石智伟, 贺新福, 焦卫红. 磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究[J]. 化工学报, 2022, 73(7): 3026-3037.
[12] 陈泉, 郑泽希, 李然, 孙其诚, 杨晖. 散斑能见度光谱法测量筒仓内颗粒流的颗粒温度[J]. 化工学报, 2022, 73(6): 2603-2611.
[13] 唐天琪, 何玉荣. 磁场对湿颗粒流化床系统中介尺度结构影响机制研究[J]. 化工学报, 2022, 73(6): 2636-2648.
[14] 王忠东, 朱春英, 马友光, 付涛涛. 并行微通道内液液两相流及介尺度效应[J]. 化工学报, 2022, 73(6): 2563-2572.
[15] 王婵, 肖国锡, 郭小雪, 徐人威, 岳源源, 鲍晓军. 基于介尺度结构解聚-重组装的Beta分子筛的绿色合成及应用[J]. 化工学报, 2022, 73(6): 2690-2697.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!