化工学报 ›› 2025, Vol. 76 ›› Issue (12): 6669-6679.DOI: 10.11949/0438-1157.20250648
贾一凡1(
), 郭海燕1(
), 任柯睿1, 关典勇1, 李玉明2
收稿日期:2025-06-16
修回日期:2025-08-07
出版日期:2025-12-31
发布日期:2026-01-23
通讯作者:
郭海燕
作者简介:贾一凡(1998—)女,硕士研究生,jia18366733680@163.com
Yifan JIA1(
), Haiyan GUO1(
), Kerui REN1, Dianyong GUAN1, Yuming LI2
Received:2025-06-16
Revised:2025-08-07
Online:2025-12-31
Published:2026-01-23
Contact:
Haiyan GUO
摘要:
构建了厌氧/好氧/缺氧/好氧同步硝化内源反硝化除磷(AOAO-SNEDPR)系统,考察了不同进水磷浓度条件下脱氮除磷效果。在运行周期为6 h,进水COD、
中图分类号:
贾一凡, 郭海燕, 任柯睿, 关典勇, 李玉明. AOAO-SNEDPR系统强化内源反硝化除磷研究[J]. 化工学报, 2025, 76(12): 6669-6679.
Yifan JIA, Haiyan GUO, Kerui REN, Dianyong GUAN, Yuming LI. Enhanced endogenous denitrifying phosphorus removal in AOAO-SNEDPR system[J]. CIESC Journal, 2025, 76(12): 6669-6679.
| 阶段 | COD/(mg/L) | C/P | ||
|---|---|---|---|---|
| Ⅰ(1~21 d) | 52.37 | 312.05 | 3.07 | 100 |
| Ⅱ(22~57 d) | 53.11 | 322.13 | 6.17 | 50 |
| Ⅲ(58~79 d) | 50.46 | 319.84 | 9.15 | 33 |
| Ⅳ(80~119 d) | 51.65 | 308.85 | 14.94 | 20 |
表1 不同实验阶段反应器进水水质
Table 1 Influent wastewater quality of the reactor during different experimental phases
| 阶段 | COD/(mg/L) | C/P | ||
|---|---|---|---|---|
| Ⅰ(1~21 d) | 52.37 | 312.05 | 3.07 | 100 |
| Ⅱ(22~57 d) | 53.11 | 322.13 | 6.17 | 50 |
| Ⅲ(58~79 d) | 50.46 | 319.84 | 9.15 | 33 |
| Ⅳ(80~119 d) | 51.65 | 308.85 | 14.94 | 20 |
图5 不同进水PO43--P浓度条件下典型周期反应器内PO43--P浓度和COD变化(图例中P-3、P-9、P-15分别代表进水PO43--P浓度为3、9、15 mg/L工况)
Fig.5 Variations of PO43--P and COD concentrations in the reactor during typical cycles under different influent PO43--P concentrations
图6 不同进水PO43--P浓度条件下典型周期反应器内各态氮和TN变化情况
Fig.6 Variations of nitrogen species and TN in the reactor during typical cycles under different influent PO43--P concentrations
| [1] | Luo Y H, Yi K, Zhang X Y, et al. Simultaneous partial nitrification, denitrification, and phosphorus removal in sequencing batch reactors via controlled reduced aeration and short-term sludge retention time decrease[J]. Journal of Environmental Management, 2023, 344: 118598. |
| [2] | 戴娴, 王晓霞, 彭永臻, 等. 进水C/N对富集聚磷菌的SNDPR系统脱氮除磷的影响[J]. 中国环境科学, 2015, 35(9): 2636-2643. |
| Dai X, Wang X X, Peng Y Z, et al. Effect of influent C/N ratio on nitrogen and phosphorus removal in an SNDPR system enriched with polyphosphate accumulating organisms[J]. China Environmental Science, 2015, 35(9): 2636-2643. | |
| [3] | Campo R, Sguanci S, Caffaz S, et al. Efficient carbon, nitrogen and phosphorus removal from low C/N real domestic wastewater with aerobic granular sludge[J]. Bioresource Technology, 2020, 305: 122961. |
| [4] | Huang X, Zhu J, Duan W Y, et al. Biological nitrogen removal and metabolic characteristics in a full-scale two-staged anoxic-oxic (A/O) system to treat optoelectronic wastewater[J]. Bioresource Technology, 2020, 300: 122595. |
| [5] | Wang X X, Wang S Y, Zhao J, et al. A novel stoichiometries methodology to quantify functional microorganisms in simultaneous (partial) nitrification-endogenous denitrification and phosphorus removal (SNEDPR)[J]. Water Research, 2016, 95: 319-329. |
| [6] | Yuan C S, Wang B, Peng Y Z, et al. Enhanced nutrient removal of simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) in a single-stage anaerobic/micro-aerobic sequencing batch reactor for treating real sewage with low carbon/nitrogen[J]. Chemosphere, 2020, 257: 127097. |
| [7] | Wang X X, Zhao J, Yu D S, et al. Stable nitrite accumulation and phosphorous removal from nitrate and municipal wastewaters in a combined process of endogenous partial denitrification and denitrifying phosphorus removal (EPDPR)[J]. Chemical Engineering Journal, 2019, 355: 560-571. |
| [8] | 戴娴, 彭永臻, 王晓霞, 等. 不同厌氧时间对富集聚磷菌的SNDPR系统处理性能的影响[J]. 中国环境科学, 2016, 36(1): 92-99. |
| Dai X, Peng Y Z, Wang X X, et al. Effect of different anaerobic durations on the performance of an SNDPR system enriched with polyphosphate-accumulating organisms[J]. China Environmental Science, 2016, 36(1): 92-99. | |
| [9] | 王晓霞, 王淑莹, 赵骥, 等. 厌氧/好氧SNEDPR系统处理低C/N比污水的优化运行[J]. 中国环境科学, 2016, 36(9): 2672-2680. |
| Wang X X, Wang S Y, Zhao J, et al. Optimized operation of an anaerobic/aerobic SNEDPR system for low C/N ratio wastewater treatment[J]. China Environmental Science, 2016, 36(9): 2672-2680. | |
| [10] | 王晓霞, 王淑莹, 赵骥, 等. SPNED-PR系统内PAOs-GAOs的竞争关系及其氮磷去除特性[J]. 中国环境科学, 2018, 38(2): 551-559. |
| Wang X X, Wang S Y, Zhao J, et al. Competitive relationship between PAOs and GAOs in SPNED-PR system and its nitrogen and phosphorus removal characteristics[J]. China Environmental Science, 2018, 38(2): 551-559. | |
| [11] | 任丽芳, 巩有奎, 孙洪伟. 碳氮比对AOA-SBR同步脱氮除磷性能及N2O释放的影响[J]. 环境工程, 2024, 42(5): 1-9. |
| Ren L F, Gong Y K, Sun H W. Effects of carbon to nitrogen ratio on simultaneous nitrogen and phosphorus removal performance and N2O emission in AOA-SBR system[J]. Environmental Engineering, 2024, 42(5): 1-9. | |
| [12] | 张杰, 杨杰, 李冬, 等. AOA-O模式下好氧颗粒污泥同步硝化内源反硝化除磷[J]. 中国环境科学, 2023, 43(10): 5226-5234. |
| Zhang J, Yang J, Li D, et al. Simultaneous nitrification, endogenous denitrification and phosphorus removal by aerobic granular sludge under AOA-O mode[J]. China Environmental Science, 2023, 43(10): 5226-5234. | |
| [13] | 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
| State Environmental Protection Administration (SEPA). Water and Wastewater Monitoring and Analysis Methods [M]. 4th ed. Beijing: China Environmental Science Press, 2002. | |
| [14] | 刘俊梅, 王璐, 李琢伟, 等. 产聚β-羟基丁酸酯(PHB)菌种的筛选及16S rDNA鉴定[J]. 粮油加工, 2014, 4(17): 71-75. |
| Liu J M, Wang L, Li Z W, et al. Screening and 16S rDNA identification of p o l y - β - h y d r o x y b u t y r a t e (PHB)-producing bacterial strains[J]. Cereals and Oils Processing, 2014, 4(17): 71-75. | |
| [15] | Luan Y N, Yin Y, Guo Z H, et al. Achieving simultaneous nitrification and endogenous denitrifying phosphorus removal in anaerobic/intermittently-aerated moving bed biofilm reactor for low carbon-to-nitrogen ratio wastewater treatment[J]. Bioresource Technology, 2024, 394: 130178. |
| [16] | Wang X X, Wang S Y, Xue T L, et al. Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage[J]. Water Research, 2015, 77: 191-200. |
| [17] | 都叶奇, 于德爽, 甄建园, 等. 进水C/N对SNEDPR系统脱氮除磷的影响[J]. 环境科学, 2019, 40(2): 816-822. |
| Du Y Q, Yu D S, Zhen J Y, et al. Effect of influent C/N ratio on nitrogen and phosphorus removal in SNEDPR system[J]. Environmental Science, 2019, 40(2): 816-822. | |
| [18] | 李冬, 李悦, 李雨朦, 等. 好氧颗粒污泥同步硝化内源反硝化脱氮除磷[J]. 中国环境科学, 2022, 42(3): 1113-1119. |
| Li D, Li Y, Li Y M, et al. Simultaneous nitrification, endogenous denitrification and phosphorus removal by aerobic granular sludge[J]. China Environmental Science, 2022, 42(3): 1113-1119. | |
| [19] | 韩芸, 许松, 董涛, 等. 碳源类型、温度及电子受体对生物除磷的影响[J]. 环境科学, 2015, 36(2): 590-596. |
| Han Y, Xu S, Dong T, et al. Effects of carbon source type, temperature and electron acceptor on biological phosphorus removal[J]. Environmental Science, 2015, 36(2): 590-596. | |
| [20] | Hou H H, Duan L, Zhou B H, et al. The performance and degradation mechanism of sulfamethazine from wastewater using IFAS-MBR[J]. Chinese Chemical Letters, 2020, 31(2): 543-546. |
| [21] | Chen P, Wu J K, Lu X W, et al. Denitrifying phosphorus removal and microbial community characteristics of two-sludge DEPHANOX system: effects of COD/TP ratio[J]. Biochemical Engineering Journal, 2021, 172: 108059. |
| [22] | Wang R F, Yang C Z, Hu H, et al. The impact of the varying nutrient concentrations on the enhanced biological phosphorus removal performance and functional phosphorus-accumulating and denitrifying genes in an anaerobic-aerobic-anoxic sequencing batch reactor[J]. Environmental Technology & Innovation, 2021, 21: 101256. |
| [23] | 王亚东, 王少坡, 郑莎莎, 等. 生物除磷系统的聚磷微生物种群及其检测方法[J]. 环境工程, 2015, 33(2): 21-26. |
| Wang Y D, Wang S P, Zheng S S, et al. Polyphosphate-accumulating organisms populations and their detection methods in biological phosphorus removal systems[J]. Environmental Engineering, 2015, 33(2): 21-26. | |
| [24] | 刘旭, 王继华, 车琦, 等. AOA-SBR系统运行效能及高效聚磷菌的特性研究[J]. 环境科学研究, 2019, 32(8): 1427-1436. |
| Liu X, Wang J H, Che Q, et al. Operational performance of AOA-SBR system and characteristics of high-efficiency phosphate-accumulating organisms[J]. Research of Environmental Sciences, 2019, 32(8): 1427-1436. | |
| [25] | Nittami T, Kasakura R, Kobayashi T, et al. Exploring the operating factors controlling Kouleothrix (type 1851), the dominant filamentous bacterial population, in a full-scale A2O plant[J]. Scientific Reports, 2020, 10: 6809. |
| [26] | 王丽谦. 低碳市政污水好氧颗粒污泥培养及脱氮除磷性能研究[D]. 北京: 北京化工大学, 2020. |
| Wang L Q. Cultivation of aerobic granular sludge and its nitrogen & phosphorus removal performance in low-carbon municipal wastewater treatment[D]. Beijing: Beijing University of Chemical Technology, 2020. | |
| [27] | He Q L, Chen L, Zhang S J, et al. Hydrodynamic shear force shaped the microbial community and function in the aerobic granular sequencing batch reactors for low carbon to nitrogen (C/N) municipal wastewater treatment[J]. Bioresource Technology, 2019, 271: 48-58. |
| [28] | Xu X C, Qiu L Y, Wang C, et al. Achieving mainstream nitrogen and phosphorus removal through simultaneous partial nitrification, anammox, denitrification, and denitrifying phosphorus removal (SNADPR) process in a single-tank integrative reactor[J]. Bioresource Technology, 2019, 284: 80-89. |
| [29] | 李冬, 高鑫, 张杰, 等. 长/短HRT交替培养同步硝化反硝化除磷颗粒[J]. 哈尔滨工业大学学报, 2023, 55(2): 9-18. |
| Li D, Gao X, Zhang J, et al. Alternating long/short HRT cultivation for simultaneous nitrification, denitrification and phosphorus removal granules[J]. Journal of Harbin Institute of Technology, 2023, 55(2): 9-18. | |
| [30] | Fan Z W, Zeng W, Wang B G, et al. Transcriptional responses of Candidatus Accumulibacter clades to environmental dynamics in enhanced biological phosphorus removal[J]. Bioresource Technology, 2020, 306: 123108. |
| [1] | 高歆婕, 许载周, 彭永臻, 黄雨薇, 丁静, 安泽铭, 汪传新. 污泥双回流-厌氧/好氧/缺氧强化内源反硝化深度脱氮[J]. 化工学报, 2022, 73(11): 5098-5105. |
| [2] | 巩有奎, 李美玲, 孙洪伟. 不同NO3-浓度An/A/O-SBR系统PAOs-GAOs竞争及N2O释放特性[J]. 化工学报, 2021, 72(3): 1675-1683. |
| [3] | 刘小芳, 郭海燕, 张胜男, 黄靓. 聚糖菌反硝化影响因素及内碳源转化特性[J]. 化工学报, 2019, 70(3): 1127-1134. |
| [4] | 王琦, 赵骥, 但琼鹏, 李夕耀, 张琼, 彭永臻. 反硝化聚磷菌的培养富集及处理生活污水的稳定运行[J]. 化工学报, 2019, 70(12): 4828-4834. |
| [5] | 孙雅雯, 张建华, 彭永臻, 王淑莹. 外加碳源类型对A2/O-BCO系统脱氮除磷性能的影响[J]. 化工学报, 2018, 69(8): 3626-3634. |
| [6] | 贾淑媛, 王淑莹, 赵骥, 李夕耀, 张琼, 彭永臻. 驯化后的聚糖菌对NO2--N和NO3--N内源反硝化速率的影响[J]. 化工学报, 2017, 68(12): 4731-4738. |
| [7] | 王梅香, 赵伟华, 王淑莹, 张勇, 彭永臻, 潘聪, 黄宇. A2N2双污泥系统反硝化除磷工艺的启动与稳定[J]. 化工学报, 2016, 67(7): 2987-2997. |
| [8] | 王梅香, 赵伟华, 黄宇, 潘聪, 彭永臻, 王淑莹. N-SBR单元硝化时间分配比对A2N2系统运行性能的影响[J]. 化工学报, 2016, 67(12): 5259-5267. |
| [9] | 张为堂, 薛晓飞, 庞洪涛, 张杰, 李冬, 彭永臻. 碳氮比对AAO-BAF工艺运行性能的影响[J]. 化工学报, 2015, 66(5): 1925-1930. |
| [10] | 王聪, 王淑莹, 张淼, 彭永臻, 曾薇. 多因素对反硝化除磷过程中COD、N和P的去除分析[J]. 化工学报, 2015, 66(4): 1467-1475. |
| [11] | 张建华, 彭永臻, 张淼, 王淑莹, 王聪. 不同电子受体配比对反硝化除磷特性及内碳源转化利用的影响[J]. 化工学报, 2015, 66(12): 5045-5053. |
| [12] | 张勇, 王淑莹, 赵伟华, 孙事昊, 彭永臻, 曾薇. 中试规模AAO-曝气生物滤池双污泥系统的启动运行[J]. 化工学报, 2015, 66(10): 4228-4235. |
| [13] | 张为堂, 侯锋, 刘青松, 邵彦青, 薛晓飞, 彭永臻. HRT和曝气量对AAO-BAF系统反硝化除磷性能的影响[J]. 化工学报, 2014, 65(4): 1436-1442. |
| [14] | 张为堂, 薛同来, 彭永臻, 刘青松, 辛振兴, 王淑莹. AAO-BAF反硝化除磷系统的二次启动特性[J]. 化工学报, 2014, 65(2): 658-663. |
| [15] | 罗亚红, 李冬, 鲍林林, 许达, 蔡言安, 张杰. 长泥龄改良A2/O工艺的短程硝化反硝化除磷[J]. 化工学报, 2014, 65(12): 4985-4996. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号