1 |
AhnJ H, KimS, ParkH, et al. N2O emissions from activated sludge processes, 2008—2009: results of a national monitoring survey in the United States [J]. Environmental Science and Technology, 2010, 44(12): 4505-4511.
|
2 |
李永波, 王淑莹, 袁泉, 等. NOx--N对初沉污泥厌氧发酵及反硝化性能的影响[J]. 化工学报, 2013, 64(4): 1431-1437.
|
|
LiY B, WangS Y, YuanQ, et al. Effect of NOx--N on anaerobic fermentation and denitrification performance of primary sludge[J]. CIESC Journal, 2013, 64(4): 1431-1437.
|
3 |
陈永志, 彭永臻, 王建华, 等. A2/O曝气生物滤池工艺反硝化除磷[J]. 化工学报, 2011, 62(3): 797-804.
|
|
ChenY Z, PengY Z, WangJ H, et al. A2/O biological aerated filter process denitrification phosphorus removal[J]. CIESC Journal, 2011, 62(3): 797-804.
|
4 |
KubaT, van LoosdrechtM C M, HeijnenJ J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system [J]. Water Research, 1996, 30(7): 1702-1710.
|
5 |
张为堂, 侯锋, 刘青松, 等. HRT和曝气量对AAO-BAF系统反硝化除磷性能的影响[J]. 化工学报, 2014, 65(4): 1436-1442.
|
|
ZhangW T, HouF, LiuQ S, et al. Effect of HRT and aeration on denitrifying phosphorus removal performance of AAO-BAF system[J]. CIESC Journal, 2014, 65(4): 1436-1442.
|
6 |
王梅香, 赵伟华, 黄宇, 等. N-SBR单元硝化时间分配比对A2N2系统运行性能的影响[J]. 化工学报, 2016, 67(12): 5259-5267.
|
|
WangM X, ZhaoW H, HuangY, et al. Effect of nitration time distribution ratio of N-SBR unit on operating performance of A2N2 system[J]. CIESC Journal, 2016, 67(12): 5259-5267.
|
7 |
CechJ S, HartmanP. Competition between polyphosphate and polysaccharide accumulating bacterial in biological phosphorus removal systems [J]. Wat. Res., 1993, 27: 1219-1225.
|
8 |
MatsuoY. Effect of the anaerobic SPT on enhanced biological phosphorus removal [J]. Water Sci. Tech., 1994, 30(6): 193- 202.
|
9 |
SatohH, MinoT, MatsuoT. Deterioration of enhanced biological phosphorus removal by the domination of microorganisms without polyphosphate accumulation[J]. Water Sci. Tech., 1994, 30(6): 203- 211.
|
10 |
CechJ S, HartmanP. Glucose induced breakdown of enhanced biological phosphorus removal [J]. Environ. Tech., 1990, 11: 651- 656.
|
11 |
LiuW T, MinoT, NakamuraK, et al. Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaerobic aerobic activated sludge with a minimized polyphosphate content[J]. Ferment. Bioeng., 1994, 77: 535-540.
|
12 |
Kerrn-JespersenJ P, HenzeM, StrubeR. Biological phosphorus uptake under anoxic and aerobic conditions[J]. Water Research, 1994, 28(5): 1253-1255.
|
13 |
马民, 陈银广, 顾国维. 聚磷菌与聚糖菌竞争影响因素的研究进展[J].环境科学与技术, 2006, (1): 102-104+121.
|
|
MaM, ChenY G, GuG W, et al. Advances in research on factors affecting competition between polyphosphate bacteria and glycans[J]. Environmental Science and Technology, 2006, (1): 102-104+121.
|
14 |
JiJ T, PengY Z, WangB, et al. Achievement of high nitrite accumulation via endogenous partial denitrification (EPD) [J] . Bioresource Technology, 2017, 224: 140-146.
|
15 |
ZengR J, YuanZ G, KellerJ. Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system[J]. Biotechnology and Bioengineering, 2003, 81(4): 397-404.
|
16 |
WangX, ZengR J, DaiY, et al. The denitrification capability of Cluster 1 Defluviicoccus Vanus-related glycgen-accumulating organisms[J]. Biotechnol. Bioeng., 2008, 99 (6): 1329-1336.
|
17 |
王景峰, 张斌, 龚泰石, 等. 聚糖菌微生物聚集体反硝化特性与微生物生态学解析[C]// 2013中国环境科学学会学术年会. 中国环境科学学会, 2013.
|
|
WangJ F, ZhangB, GongT S, et al. Denitrification characteristics and microbial ecology analysis of microbial aggregates in glycogen[C]// Proceedings of the 2013 Annual Conference of the Chinese Society of Environmental Sciences. Chinese Society of Environmental Sciences, 2013.
|
18 |
安鸿雪. 胞内聚合物对反硝化和反硝化除磷过程的影响[D]. 南宁: 广西大学, 2013.
|
|
AnH X. Effect of intracellular polymer on denitrification and denitrifying phosphorus removal process[D]. Nanning: Guangxi University, 2013.
|
19 |
国家环境保护总局. 水和废水监测分析方法[M]. 4版.北京: 中国环境科学出版社, 2002.
|
|
State Environmental Protection Administration. Water and Wastewater Monitoring and Analysis Method[M]. 4th ed. Beijing: China Environmental Science Press, 2002.
|
20 |
刘长莉, 邢文慧, 王国影, 等. A/O交替驯化活性污泥积累PHB的研究[J]. 环境科学与技术, 2013, 36(11): 40-43+88.
|
|
LiuC L, XingW H, WangG Y, et al. Study on accumulation of PHB by A/O alternating acclimated activated sludge[J]. Environmental Science and Technology, 2013, 36(11): 40-43+88.
|
21 |
吴鹏, 程朝阳, 沈耀良, 等. 基于ABR-MBR组合工艺不同进水C/N比对反硝化除磷性能的影响机制[J]. 环境科学, 2017, 38(9): 3781-3786.
|
|
WuP, ChengC Y, ShenY L, et al. Influence mechanism of different influent C/N ratio on denitrifying phosphorus removal performance based on ABR-MBR combination process[J]. Environmental Science, 2017, 38(9): 3781-3786.
|
22 |
贾淑媛, 王淑莹, 赵骥, 等. 驯化后的聚糖菌对NO2--N和NO3--N内源反硝化速率的影响[J]. 化工学报, 2017, 68(12): 4731-4738.
|
|
JiaS Y, WangS Y, ZhaoJ, et al. Effects of domesticated glycans on endogenous denitrification rates of NO2--N and NO3--N[J]. CIESC Journal, 2017, 68(12): 4731-4738.
|
23 |
郭海娟, 马放, 沈耀良. C/N比对反硝化除磷效果的影响[J]. 环境科学学报, 2005, (3): 367-371.
|
|
GuoH J, MaF, ShenY L. Effect of C/N ratio on denitrifying phosphorus removal effect [J]. Acta Scientiae Circumstantiae, 2005, (3): 367-371.
|
24 |
尚会来, 彭永臻, 张静蓉, 等. 不同电子受体反硝化过程中C/N对N2O产量的影响[J]. 环境科学, 2009, 30(7): 2007-2012.
|
|
ShangH L, PengY Z, ZhangJ R, et al. Effect of C/N on N2O production in denitrification process of different electron receptors[J]. Environmental Science, 2009, 30(7): 2007-2012.
|
25 |
刘越, 彭轶, 李鹏章, 等. 短程硝化过程中NO2-对NH4+及NH2OH氧化产生N2O的影响[J].化工学报, 2015, 66(3): 1133-1141.
|
|
LiuY, PengY, LiP Z, et al. Effect of NO2- on the oxidation of NH4+ and NH2OH to N2O during short-cut nitrification[J]. CIESC Journal, 2015, 66(3): 1133-1141.
|
26 |
刘越, 李鹏章, 彭永臻. 短程硝化过程中硝化速率与N2O产生速率的关系[J]. 化工学报, 2015, 66(11): 4652-4660.
|
|
LiuY, LiP Z, PengY Z. Relationship between nitrification rate and N2O production rate in short-cut nitrification[J]. CIESC Journal, 2015, 66(11): 4652-4660.
|
27 |
苗志加, 薛桂松, 翁冬晨, 等. 亚硝酸盐对聚磷菌反硝化除磷代谢及N2O产生的影响[J]. 化工学报, 2013, 64(6): 2201-2207.
|
|
MiaoZ J, XueG S, WengD C, et al. Effects of nitrite on denitrifying phosphorus removal metabolism and N2O production in polyphosphate bacteria[J]. CIESC Journal, 2013, 64(6): 2201-2207.
|
28 |
张建华, 彭永臻, 张淼, 等. 不同电子受体配比对反硝化除磷特性及内碳源转化利用的影响[J]. 化工学报, 2015, 66(12): 5045-5053.
|
|
ZhangJ H, PengY Z, ZhangM, et al. Effects of different electron acceptor ratios on denitrifying phosphorus removal and conversion and utilization of internal carbon sources[J].CIESC Journal, 2015, 66(12): 5045-5053.
|
29 |
侯红勋, 王淑莹, 闫骏, 等. 不同碳源类型对生物除磷过程释放磷的影响[J]. 化工学报, 2007, 58(8): 2081-2086.
|
|
HouH X, WangS Y, YanJ, et al. Effects of different carbon source types on phosphorus release from biological phosphorus removal[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(8): 2081-2086.
|
30 |
张雨婷, 曹利锋, 李乃玉, 等. 反硝化过程中硝酸盐与亚硝酸盐之间对电子的竞争[J]. 上海师范大学学报(自然科学版), 2017, 46(4): 483-488.
|
|
ZhangY T, CaoL F, LiN Y, et al. Competition between electrons between nitrate and nitrite in denitrification[J]. Journal of Shanghai Normal University (Natural Science Edition), 2017, 46(4): 483-488.
|
31 |
王冲, 江帆, 王红宇, 等. 碳源和进水pH值对聚糖菌代谢的短期影响[J]. 中国给水排水, 2012, 28(1): 1-6.
|
|
WangC, JiangF, WangH Y, et al. Short-term effects of carbon source and influent pH on glycan metabolism[J]. China Water & Wastewater, 2012, 28(1): 1-6.
|
32 |
OehmenA, Keller-LehmannB, ZengR J, et al. Optimisation of poly-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J].J. Chromatogr. A, 2005, 1070(1/2): 131-136.
|
33 |
王暄. 厌氧-好氧SBR中颗粒污泥胞内储存及脱氮除磷特性[D]. 天津: 天津大学, 2005.
|
|
WangX. Intracellular storage, denitrification and phosphorus removal of granular sludge in anaerobic-aerobic SBR[D]. Tianjin: Tianjin University, 2005.
|