化工学报 ›› 2025, Vol. 76 ›› Issue (12): 6486-6496.DOI: 10.11949/0438-1157.20250798
熊晟杰1(
), 谢莉1(
), 徐梁1, 曹余庆2, 杨慧中1
收稿日期:2025-07-21
修回日期:2025-10-21
出版日期:2025-12-31
发布日期:2026-01-23
通讯作者:
谢莉
作者简介:熊晟杰(2000—),男,硕士研究生, 841403746@qq.com
基金资助:
Shengjie XIONG1(
), Li XIE1(
), Liang XU1, Yuqing CAO2, Huizhong YANG1
Received:2025-07-21
Revised:2025-10-21
Online:2025-12-31
Published:2026-01-23
Contact:
Li XIE
摘要:
传统基于深度学习的软测量建模方法缺乏在线更新机制,且随着网络层数增加易产生信息冗余,从而限制了模型预测性能的提升。针对上述问题,提出一种融合即时学习的深层扩展变分自编码器(deep extended variational autoencoder with just-in-time learning,JITL-DE-VAE),包括离线训练和在线更新两个阶段。首先,针对离线阶段多层VAE重构误差累积,以及特征提取中无效信息过多导致预测性能不佳的问题,引入基于关键变量指导的特征约束机制,构建扩展变分自编码器(extended variational autoencoder,E-VAE)提高特征提取的准确性。其次,在E-VAE基础上提出深层扩展变分自编码器(deep extended variational autoencoder,DE-VAE),将前一层的输入和隐藏特征共同作为下一层的输入,通过跨层信息整合策略显著增强特征利用效率。此外,在线更新阶段引入即时学习思想,基于最大互信息系数计算加权欧氏距离从历史数据库中检索相似样本,并根据样本相似度对损失函数进行动态加权以更新模型,从而提高模型对时变过程的自适应能力。最后,基于工业脱丁烷塔和硫回收过程数据开展了消融实验和对比实验,结果验证了所提方法的有效性和优越性。
中图分类号:
熊晟杰, 谢莉, 徐梁, 曹余庆, 杨慧中. 融合即时学习的深层扩展VAE软测量建模方法[J]. 化工学报, 2025, 76(12): 6486-6496.
Shengjie XIONG, Li XIE, Liang XU, Yuqing CAO, Huizhong YANG. Soft sensor development based on deep extended variational autoencoder with just-in-time learning[J]. CIESC Journal, 2025, 76(12): 6486-6496.
| 输入变量 | 变量描述 |
|---|---|
| u1 | 顶部温度/℃ |
| u2 | 顶部压力/(kg/cm2) |
| u3 | 塔顶回流量/(m3/h) |
| u4 | 塔顶出料量/(m3/h) |
| u5 | 塔板6温度/℃ |
| u6 | 塔底温度1/℃ |
| u7 | 塔底温度2/℃ |
表1 脱丁烷塔工艺变量
Table 1 Process variables of the debutanizer column
| 输入变量 | 变量描述 |
|---|---|
| u1 | 顶部温度/℃ |
| u2 | 顶部压力/(kg/cm2) |
| u3 | 塔顶回流量/(m3/h) |
| u4 | 塔顶出料量/(m3/h) |
| u5 | 塔板6温度/℃ |
| u6 | 塔底温度1/℃ |
| u7 | 塔底温度2/℃ |
| 方法 | RMSE | R2 |
|---|---|---|
| VAE | 0.0432 | 0.9537 |
| E-VAE | 0.0297 | 0.9759 |
| DE-VAE | 0.0121 | 0.9961 |
| JITL-DE-VAE(ed) | 0.0112 | 0.9972 |
| JITL-DE-VAE | 0.0093 | 0.9984 |
表2 脱丁烷塔消融实验五种模型的评价指标
Table 2 Evaluation metrics of the five models for the debutanizer column ablation study
| 方法 | RMSE | R2 |
|---|---|---|
| VAE | 0.0432 | 0.9537 |
| E-VAE | 0.0297 | 0.9759 |
| DE-VAE | 0.0121 | 0.9961 |
| JITL-DE-VAE(ed) | 0.0112 | 0.9972 |
| JITL-DE-VAE | 0.0093 | 0.9984 |
| 方法 | RMSE | R2 | RMSE降低幅度 |
|---|---|---|---|
| SAE | 0.0456 | 0.9342 | 79.6% |
| SQAE | 0.0428 | 0.9456 | 78.3% |
| SVAE | 0.0302 | 0.9720 | 69.2% |
| H-NPLVR | 0.0289 | 0.9775 | 67.8% |
| JITL-DE-VAE | 0.0093 | 0.9984 | — |
表3 脱丁烷塔对比实验五种模型的评价指标
Table 3 Evaluation metrics of the five models for the debutanizer column comparative experiment
| 方法 | RMSE | R2 | RMSE降低幅度 |
|---|---|---|---|
| SAE | 0.0456 | 0.9342 | 79.6% |
| SQAE | 0.0428 | 0.9456 | 78.3% |
| SVAE | 0.0302 | 0.9720 | 69.2% |
| H-NPLVR | 0.0289 | 0.9775 | 67.8% |
| JITL-DE-VAE | 0.0093 | 0.9984 | — |
| 变量 | 描述 | 单位 |
|---|---|---|
| u1 | MEA气体流 | m3/s |
| u2 | 初级空气流 | m3/s |
| u3 | 二级空气流 | m3/s |
| u4 | SWS区域气体流 | m3/s |
| u5 | SWS区域空气流 | m3/s |
| y | SO2浓度 | mol/m3 |
表4 硫回收过程变量
Table 4 Process variables of the sulfur recovery
| 变量 | 描述 | 单位 |
|---|---|---|
| u1 | MEA气体流 | m3/s |
| u2 | 初级空气流 | m3/s |
| u3 | 二级空气流 | m3/s |
| u4 | SWS区域气体流 | m3/s |
| u5 | SWS区域空气流 | m3/s |
| y | SO2浓度 | mol/m3 |
| 方法 | RMSE | R2 | R2提升幅度 |
|---|---|---|---|
| KPLS | 0.0227 | 0.7041 | 19.7% |
| VWSAE | 0.0232 | 0.7963 | 5.9% |
| H-NPLVR | 0.0234 | 0.7832 | 7.6% |
| DE-VAE | 0.0227 | 0.8285 | 1.8% |
| JITL-DE-VAE | 0.0222 | 0.8438 | — |
表5 硫回收对比实验五种模型的评价指标
Table 5 Evaluation metrics of the five models for the sulfur recovery comparative experiment
| 方法 | RMSE | R2 | R2提升幅度 |
|---|---|---|---|
| KPLS | 0.0227 | 0.7041 | 19.7% |
| VWSAE | 0.0232 | 0.7963 | 5.9% |
| H-NPLVR | 0.0234 | 0.7832 | 7.6% |
| DE-VAE | 0.0227 | 0.8285 | 1.8% |
| JITL-DE-VAE | 0.0222 | 0.8438 | — |
| [1] | Jia M W, Yang C, Pan Z X, et al. Adversarial relationship graph learning soft sensor via negative information exclusion[J]. Journal of Process Control, 2025, 145: 103354. |
| [2] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
| Yan L Q, Wang Z L. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model[J]. CIESC Journal, 2023, 74(8): 3407-3418. | |
| [3] | Liu Y, Jia M W, Xu D Y, et al. Physics-guided graph learning soft sensor for chemical processes[J]. Chemometrics and Intelligent Laboratory Systems, 2024, 249: 105131. |
| [4] | Sun Q Q, Ge Z Q. A survey on deep learning for data-driven soft sensors[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 5853-5866. |
| [5] | Jia M W, Jiang L W, Guo B, et al. Physical-anchored graph learning for process key indicator prediction[J]. Control Engineering Practice, 2025, 154: 106167. |
| [6] | 黎宏陶, 王振雷, 王昕. 基于即时学习的改进条件高斯回归软测量[J]. 化工学报, 2024, 75(6): 2299-2312. |
| Li H T, Wang Z L, Wang X. Improved conditional Gaussian regression soft sensor based on just-in-time learning[J]. CIESC Journal, 2024, 75(6): 2299-2312. | |
| [7] | Jia M W, Xu D Y, Yang T, et al. Graph convolutional network soft sensor for process quality prediction[J]. Journal of Process Control, 2023, 123: 12-25. |
| [8] | Hasnen S H, Shahid M, Zabiri H, et al. Semi-supervised adaptive PLS soft-sensor with PCA-based drift correction method for online valuation of NO x emission in industrial water-tube boiler[J]. Process Safety and Environmental Protection, 2023, 172: 787-801. |
| [9] | 王春鹏, 于佐军, 孟凡强. 折息移动窗递推PLS算法及其在聚丙烯生产过程中的应用[J]. 化工学报, 2013, 64(12): 4592-4598. |
| Wang C P, Yu Z J, Meng F Q. Discount moving window recursive PLS algorithm and its application to process of polypropylene production[J]. CIESC Journal, 2013, 64(12): 4592-4598. | |
| [10] | 赵超, 戴坤成, 王贵评, 等. 基于AWLS-SVM的污水处理过程软测量建模[J]. 仪器仪表学报, 2015, 36(8): 1792-1800. |
| Zhao C, Dai K C, Wang G P, et al. Soft sensor modeling for wastewater treatment process based on adaptive weighted least squares support vector machines[J]. Chinese Journal of Scientific Instrument, 2015, 36(8): 1792-1800. | |
| [11] | He Y L, Li X Y, Ma J H, et al. Attribute-relevant distributed variational autoencoder integrated with LSTM for dynamic industrial soft sensing[J]. Engineering Applications of Artificial Intelligence, 2023, 119: 105737. |
| [12] | 赵武灵, 满奕. 基于变分编码器的纳米纤维素分子结构预测模型框架研究[J]. 化工学报, 2024, 75(9): 3221-3230. |
| Zhao W L, Man Y. Research on framework of nanocellulose molecular structure prediction model based on variational encoder[J]. CIESC Journal, 2024, 75(9): 3221-3230. | |
| [13] | Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. |
| [14] | Jia M W, Zhou L, Liu Y, et al. Global dependency graph network for soft sensing in process industry[J]. IEEE Sensors Journal, 2024, 24(16): 26290-26300. |
| [15] | LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
| [16] | Shang C, Yang F, Huang D X, et al. Data-driven soft sensor development based on deep learning technique[J]. Journal of Process Control, 2014, 24(3): 223-233. |
| [17] | Yao L, Ge Z Q. Deep learning of semisupervised process data with hierarchical extreme learning machine and soft sensor application[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1490-1498. |
| [18] | Jia M W, Yao Y, Liu Y. Review on graph neural networks for process soft sensor development, fault diagnosis, and process monitoring[J]. Industrial & Engineering Chemistry Research, 2025, 64(17): 8543-8564. |
| [19] | Yuan X F, Huang B, Wang Y L, et al. Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE[J]. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3235-3243. |
| [20] | Yuan X F, Zhou J, Huang B, et al. Hierarchical quality-relevant feature representation for soft sensor modeling: a novel deep learning strategy[J]. IEEE Transactions on Industrial Informatics, 2020, 16(6): 3721-3730. |
| [21] | Tian Y, Zhu Q X, He Y L. Novel deep layers-extended autoencoder with correlation and its industrial soft sensing[J]. IEEE Transactions on Industrial Informatics, 2024, 20(1): 596-604. |
| [22] | Kingma D P, Welling M. Autoencoding variational bayes[J]. arXiv:. |
| [23] | Shen B B, Yao L, Ge Z Q. Nonlinear probabilistic latent variable regression models for soft sensor application: fom shallow to deep structure[J]. Control Engineering Practice, 2020, 94: 104198. |
| [24] | 崔琳琳, 沈冰冰, 葛志强. 基于混合变分自编码器回归模型的软测量建模方法[J]. 自动化学报, 2022, 48(2): 398-407. |
| Cui L L, Shen B B, Ge Z Q. A mixture variational autoencoder regression model for soft sensor application[J]. Acta Automatica Sinica, 2022, 48(2): 398-407. | |
| [25] | Wang C Z, Li Y G, Huang K K, et al. VAE4RSS: a VAE-based neural network approach for robust soft sensor with application to zinc roasting process[J]. Engineering Applications of Artificial Intelligence, 2022, 114: 105180. |
| [26] | Xu L, Xie L, Sun L, et al. A novel soft sensor modeling method based on gated stacked target-supervised VAE with variable weights[J]. Control Engineering Practice, 2025, 155: 106181. |
| [27] | Pan B, Jin H P, Wang L, et al. Just-in-time learning based soft sensor with variable selection and weighting optimized by evolutionary optimization for quality prediction of nonlinear processes[J]. Chemical Engineering Research and Design, 2019, 144: 285-299. |
| [28] | Jia M W, Liu Q, Jiang L W, et al. Just-in-time process soft sensor with spatiotemporal graph decoupled learning[J]. Chemometrics and Intelligent Laboratory Systems, 2025, 261: 105367. |
| [29] | Liu Q, Yin R D, Guo X W, et al. Locally spatiotemporal soft sensor for key indicator prediction in cement production process[J]. Chemical Engineering Science, 2025, 307: 121386. |
| [30] | Wu Y J, Liu D J, Yuan X F, et al. A just-in-time fine-tuning framework for deep learning of SAE in adaptive data-driven modeling of time-varying industrial processes[J]. IEEE Sensors Journal, 2021, 21(3): 3497-3505. |
| [31] | Pu Y C, Gan Z, Henao R, et al. Variational autoencoder for deep learning of images, labels and captions[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. ACM, 2016: 2360-2368. |
| [32] | Rani A, Singh V, Gupta J R P. Development of soft sensor for neural network based control of distillation column[J]. ISA Transactions, 2013, 52(3): 438-449. |
| [33] | Fortuna L, Graziani S, Rizzo A, et al. Soft Sensors for Monitoring and Control of Industrial Processes[M]. London: Springer London, 2007. |
| [34] | Fortuna L, Rizzo A, Sinatra M, et al. Soft analyzers for a sulfur recovery unit[J]. Control Engineering Practice, 2003, 11(12): 1491-1500. |
| [1] | 朱春梦, 李增, 柳楠, 赵云鹏, 石孝刚, 蓝兴英. 基于自编码器和多尺度符号转移熵的FCC沉降器跑剂故障检测[J]. 化工学报, 2025, 76(9): 4512-4523. |
| [2] | 郭旭, 贾继宁, 姚克俭. 基于优化CNN-BiLSTM神经网络的间歇精馏过程建模[J]. 化工学报, 2025, 76(9): 4613-4629. |
| [3] | 范龙飞, 史旭东, 熊伟丽. 跨工况下基于参数迁移的域适应宽度学习软测量建模[J]. 化工学报, 2025, 76(9): 4644-4657. |
| [4] | 王三一, 黄文来. 电化学合成氨流程建模与优化[J]. 化工学报, 2025, 76(9): 4474-4486. |
| [5] | 刘奕扬, 邢志祥, 刘烨铖, 彭明, 李玉洋, 李云浩, 沈宁舟. 加氢站液氢泄漏扩散特性与安全监测数值模拟研究[J]. 化工学报, 2025, 76(9): 4694-4708. |
| [6] | 黄荣廷, 陶奕淳, 陈江林, 李世航, 杨子系, 王仕远, 罗祥轩. 矿井除湿溶液再生速率预测研究[J]. 化工学报, 2025, 76(7): 3572-3584. |
| [7] | 王芳, 马素霞, 田营, 刘众元. 基于LSTM动态修正一维机理模型的CFB机组NO x 排放浓度预测方法[J]. 化工学报, 2025, 76(7): 3416-3425. |
| [8] | 王金江, 鲁振杰, 安维峥, 杨风允, 秦小刚. ORC发电系统工艺过程预警诊断技术研究与展望[J]. 化工学报, 2025, 76(7): 3137-3152. |
| [9] | 郭梁, 陈烨, 贾启明, 谢秀娟. 液氦贮罐的自增压理论模拟及实验研究[J]. 化工学报, 2025, 76(7): 3561-3571. |
| [10] | 刘翌晗, 王艳, 马浩, 王团结, 戴翠红. 基于分布式非线性映射和并行输入的BiLSTM软测量建模方法[J]. 化工学报, 2025, 76(7): 3373-3387. |
| [11] | 王涛, 李光明, 胡秋霞, 徐静. 基于时序演变粒子群算法的双色注射产品翘曲工艺优化[J]. 化工学报, 2025, 76(7): 3403-3415. |
| [12] | 张涵川, 尚超, 吕文祥, 黄德先, 张亚宁. 基于无监督时序聚类的催化裂化装置工况划分识别与产率预测方法[J]. 化工学报, 2025, 76(6): 2781-2790. |
| [13] | 张豪豪, 郭莉, 李馨怡, 陈锦溢, 华超, 陆平. 隔板精馏塔的优化设计及动态控制研究进展[J]. 化工学报, 2025, 76(6): 2434-2450. |
| [14] | 张京新, 何皎洁, 蔡庆旺, 康子怡, 杨玉思, 王彤, 曹仙桃, 杨利伟. 基于二次分解和BiLSTM的污水厂出水COD浓度预测[J]. 化工学报, 2025, 76(6): 2859-2871. |
| [15] | 李文亮, 纪成, 梁晨, 吴思辰, 陈石林, 孙巍, 翟持. 基于TDMN的青霉素浓度在线软测量[J]. 化工学报, 2025, 76(6): 2848-2858. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号